DOI QR코드

DOI QR Code

Experimental Study on Mixed-Model Production of Stator and Rotor using Motor Core Laminated Stamping Die Technology for Attaching and Detaching Cam

Cam 착탈 방식의 모터코어 적층금형 기술을 적용한 Stator와 Rotor의 다종 혼류 생산에 대한 연구

  • Received : 2017.06.21
  • Accepted : 2017.07.20
  • Published : 2017.08.01

Abstract

Mixed-model production technology is a method of producing multiple products with one production process and production line in order to reduce wasted manpower and adjust to market trends. In other words, mixed-model production is a flexible production system that changes production volume by model according to market demand. This study has developed a progressive laminated stamping die technology to enable flexible production of a motor core consisting of attaching and detaching the Cam on the back of the punch so that two kinds of stator and two kinds of rotor could be produced in one progressive die.

Keywords

References

  1. S. K. Sitaraman, G. L. Kinzel, T. Altan, 1991, A Knowledge-Based System for Process-Sequence Design in Axisymmetric Sheet-Metal Forming, J. Mat. Proc. Tech., Vol. 25, No. 3, pp. 247-271. https://doi.org/10.1016/0924-0136(91)90111-Q
  2. B. S. So, D. H. Park, T. J. Ko, 2008, Hybrid Manufacturing Technologies, J. Kor. Soc. Precis. Eng., Vol. 25, No. 9, pp. 7-13.
  3. Y. J. Ko, H. S. Kwak, J. H. Bae, C. Kim, 2014, Progressive Process Design for Delta Sash in Vehicles, J. Kor. Soc. Precis. Eng., Vol. 31, No. 12, pp. 1161-1170. https://doi.org/10.7736/KSPE.2014.31.12.1161
  4. D. C. Lee, J. W. Yun, 2017, Study on the Automatic Strip Layout Design of Shield Connector, J. Kor. Academia-Industrial Cooperation Soc., Vol. 18, No. 2, pp. 450-455. https://doi.org/10.5762/KAIS.2017.18.2.450
  5. S. J. Lim, S. H. Kim, K. K. Choi, 2010, A Study on Development of Small Motor Core Die for High Efficiency Induction Motor, J. Kor. Academia-Industrial Cooperation Soc., Vol. 11, No. 2, pp. 455-460. https://doi.org/10.5762/KAIS.2010.11.2.455
  6. K. H. Ahn, D. H. Yoo, M. H. Seo, S. H. Park, K. S. Chung, 2009, Spring-Back Prediction of TWIP Automotive Sheets, Met. Mater. Int., Vol. 15, No. 4, pp. 637-647. https://doi.org/10.1007/s12540-009-0637-z
  7. D. H. Kim, D. H. Yoon, S. S. Seol, D. W. Jung, 2016, Study on Spring-Back Effect according to Roll Gap and Forming Velocity of Roll Forming Process, J. Kor. Soc. Precis. Eng., Vol. 33, No. 6, pp. 477-483. https://doi.org/10.7736/KSPE.2016.33.6.477
  8. S. H. Kwon, H. S. Lee, Y. S. Lee, S. W. Kim, C. Y. Jung, S. Hong, 2016, Compensation Design to Reduce Springback in Sheet Metal Forming of 1.2GPa Ultra High Strength Steel, Trans. Mater. Process., Vol. 25, No. 5, pp. 301-305. https://doi.org/10.5228/KSTP.2016.25.5.301
  9. B. G. Kim, I. S. Lee, Y. T. Keum, 2009, Study on the Springback Reduction of Automotive Advanced High Strength Steel Panel, Trans. Mater. Process., Vol. 18, No. 6, pp. 488-493. https://doi.org/10.5228/KSPP.2009.18.6.488
  10. D. H. Park, H. H. Kwon, 2016, Development of Automotive Seat Rail Parts for Improving Shape Fixability of Ultra High Strength Steel of 980MPa, J. Kor. Soc. Manuf. Technol. Eng., Vol. 15, No. 5, pp. 137-144.
  11. H. J. Shin, 2006, Development of Hierarchical Production Planning and Control System for Mixed-Model Assembly Manufacture - An Application in Refrigerator Factory, IE Interfaces, Vol. 19, No. 1, pp. 34-42.
  12. D. H. Park, J. J. Gu, 2014, Experimental Study of New Welding Assembly Technology Applied with Mixed-Model Production Method, J. Kor. Soc. Manuf. Technol. Eng., Vol. 23, No. 6, pp. 602-608. https://doi.org/10.7735/ksmte.2014.23.6.602