• Title/Summary/Keyword: mixed boundary conditions

Search Result 131, Processing Time 0.029 seconds

On the Reconstruction of Pinwise Flux Distribution Using Several Types of Boundary Conditions

  • Park, C. J.;Kim, Y. H.;N. Z. Cho
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.311-319
    • /
    • 1996
  • We reconstruct the assembly pinwise flux using several types of boundary conditions and confirm that the reconstructed fluxes are the same with the reference flux if the boundary condition is exact. We test EPRI-9R benchmark problem with four boundary conditions, such as Dirichlet boundary condition, Neumann boundary condition, homogeneous mixed boundary condition (albedo type), and inhomogeneous mixed boundary condition. We also test reconstruction of the pinwise flux from nodal values, specifically from the AFEN [1, 2] results. From the nodal flux distribution we obtain surface flux and surface current distributions, which can be used to construct various types of boundary conditions. The result show that the Neumann boundary condition cannot be used for iterative schemes because of its ill-conditioning problem and that the other three boundary conditions give similar accuracy. The Dirichlet boundary condition requires the shortest computing time. The inhomogeneous mixed boundary condition requires only slightly longer computing time than the Dirichlet boundary condition, so that it could also be an alternative. In contrast to the fixed-source type problem resulting from the Dirichlet, Neumann, inhomogeneous mixed boundary conditions, the homogeneous mixed boundary condition constitutes an eigenvalue problem and requires longest computing time among the three (Dirichlet, inhomogeneous mixed, homogeneous mixed) boundary condition problems.

  • PDF

A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions

  • Eftekhari, Seyyed A.
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.655-670
    • /
    • 2018
  • A coupled method, that combines the Ritz method and the finite element (FE) method, is proposed to solve the vibration problem of rectangular thin and thick plates with general boundary conditions. The eigenvalue partial differential equation(s) of the plate is (are) first reduced to a set of eigenvalue ordinary differential equations by the application of the Ritz method. The resulting eigenvalue differential equations are then reduced to an eigenvalue algebraic equation system using the finite element method. The natural boundary conditions of the plate problem including the free edge and free corner boundary conditions are also implemented in a simple and accurate manner. Various boundary conditions including simply supported, clamped and free boundary conditions are considered. Comparisons with existing numerical and analytical solutions show that the proposed mixed method can produce highly accurate results for the problems considered using a small number of Ritz terms and finite elements. The proposed mixed Ritz-FE formulation is also compared with the mixed FE-Ritz formulation which has been recently proposed by the present author and his co-author. It is found that the proposed mixed Ritz-FE formulation is more efficient than the mixed FE-Ritz formulation for free vibration analysis of rectangular plates with Levy-type boundary conditions.

Extension of the adaptive boundary element scheme for the problem with mixed boundary conditions

  • Kamiya, N.;Aikawa, Y.;Kawaguchi, K.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.2
    • /
    • pp.191-202
    • /
    • 1996
  • This paper presents a construction of adaptive boundary element for the problem with mixed boundary conditions such as heat transfer between heated body surface and surrounding medium. The scheme is based on the sample point error analysis and on the extended error indicator, proposed earlier by the authors for the potential and elastostatic problems, and extended successfully to multidomain and thermoelastic analyses. Since the field variable is connected with its derivative on the boundary, their errors are also interconnected by the specified condition. The extended error indicator on each boundary element is modified to meet with the situation. Two numerical examples are shown to indicate the differences due to the prescribed boundary conditions.

One-Dimensional Model for Simulations of Atmospheric Mixed Layer : Application to Dukyang Bay Area (대기혼합층 모사를 위한 1차원 수치모형 : 득량만에서의 적용)

  • Kim, Yoo-Keun;Moon, Sung-Euii;Ahn, Joong-Bae
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.425-435
    • /
    • 1997
  • One-dimensional thermodynamic mixed layer model to stimulate variations of meteorological variables wish the planetary boundary layer has been developed In this study. This model consists of 2 prognostic equations, which can predict the variations of potential temperature and mixing ratio and several diagnostic equations. Physics within the surface and mixed layers has been considered seperately in the model. For the variations of the model, Its result has been analysed and compared with observated data over Ole Dukyang Bay for one day, July 23, 1992. The simulated height of mixed layer is comparable to the observation and the variations of temperature and mixing ratio in the mixed layer are also reasonably simulated. Those Imply that the model responds appropriately with given boundary conditions In sprite of Its simplilfied assumptions applied to the model and insufficient boundary and Initial conditions.

  • PDF

EXISTENCE OF THREE WEAK SOLUTIONS FOR A CLASS OF NONLINEAR OPERATORS INVOLVING p(x)-LAPLACIAN WITH MIXED BOUNDARY CONDITIONS

  • Aramaki, Junichi
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.531-551
    • /
    • 2021
  • In this paper, we consider a mixed boundary value problem to a class of nonlinear operators containing p(x)-Laplacian. More precisely, we consider the problem with the Dirichlet condition on a part of the boundary and the Steklov boundary condition on an another part of the boundary. We show the existence of at least three weak solutions under some hypotheses on given functions and the values of parameters.

Static analysis of laminated and sandwich composite doubly-curved shallow shells

  • Alankaya, Veysel;Oktem, Ahmet Sinan
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1043-1066
    • /
    • 2016
  • A new analytical solution based on a third order shear deformation theory for the problem of static analysis of cross-ply doubly-curved shells is presented. The boundary-discontinuous generalized double Fourier series method is used to solve highly coupled linear partial differential equations with the mixed type simply supported boundary conditions prescribed on the edges. The complementary boundary constraints are introduced through boundary discontinuities generated by the selected boundary conditions for the derivation of the complementary solution. The numerical accuracy of the solution is compared by studying the comparisons of deflections, stresses and moments of symmetric and anti-symmetric laminated shells with finite element results using commercially available software under uniformly distributed load. Results are in good agreement with finite element counterparts. Additional results of the symmetric and anti-symmetric laminated and sandwich shells under single point load at the center and pressure load, are presented to provide data for the unsolved boundary conditions, benchmark comparisons and verifications.

FINITE ELEMENT ANALYSIS FOR A MIXED LAGRANGIAN FORMULATION OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Kim, Hong-Chul
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.87-118
    • /
    • 1997
  • This paper is concerned with a mixed Lagrangian formulation of the wiscous, stationary, incompressible Navier-Stokes equations $$ (1.1) -\nu\Delta u + (u \cdot \nabla)u + \nabla_p = f in \Omega $$ and $$ (1.2) \nubla \cdot u = 0 in \Omega $$ along with inhomogeneous Dirichlet boundary conditions on a portion of the boundary $$ (1.3) u = ^{0 on \Gamma_0 _{g on \Gamma_g, $$ where $\Omega$ is a bounded open domain in $R^d, d = 2 or 3$, or with a boundary $\Gamma = \partial\Omega$, which is composed of two disjoint parts $\Gamma_0$ and $\Gamma_g$.

  • PDF

PARAMETER-UNIFORM NUMERICAL METHOD FOR A SYSTEM OF COUPLED SINGULARLY PERTURBED CONVECTION-DIFFUSION EQUATIONS WITH MIXED TYPE BOUNDARY CONDITIONS

  • Tamilselvan, A.;Ramanujam, N.;Priyadharshini, R. Mythili;Valanarasu, T.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.109-130
    • /
    • 2010
  • In this paper, a numerical method for a weakly coupled system of two singularly perturbed convection-diffusion second order ordinary differential equations with the mixed type boundary conditions is presented. Parameter-uniform error bounds for the numerical solution and also to numerical derivative are established. Numerical results are provided to illustrate the theoretical results.

NUMERICAL INTEGRATION METHOD FOR SINGULAR PERTURBATION PROBLEMS WITH MIXED BOUNDARY CONDITIONS

  • Andargie, Awoke;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1273-1287
    • /
    • 2008
  • In this paper, the numerical integration method for general singularly perturbed two point boundary value problems with mixed boundary conditions of both left and right end boundary layer is presented. The original second order differential equation is replaced by an approximate first order differential equation with a small deviating argument. By using the trapezoidal formula we obtain a three term recurrence relation, which is solved using Thomas Algorithm. To demonstrate the applicability of the method, we have solved four linear (two left and two right end boundary layer) and one nonlinear problems. From the results, it is observed that the present method approximates the exact or the asymptotic expansion solution very well.

  • PDF