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PARAMETER-UNIFORM NUMERICAL METHOD FOR A
SYSTEM OF COUPLED SINGULARLY PERTURBED
CONVECTION-DIFFUSION EQUATIONS WITH
MIXED TYPE BOUNDARY CONDITIONS
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ABSTRACT. In this paper, a numerical method for a weakly coupled system
of two singularly perturbed convection-diffusion second order ordinary dif-
ferential equations with the mixed type boundary conditions is presented.
Parameter-uniform error bounds for the numerical solution and also to
numerical derivative are established. Numerical results are provided to
illustrate the theoretical results.
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1. Introduction

Many problems arising from various fields of physical interest such as bio-
chemical kinetics, fluid dynamics, plasma physics, mechanical and electrical sys-
tems, the observed phenomenon, for examples, linearized Navier-Stokes equa-
tion at high Reynolds number, drift diffusion equation of semiconductor device
modeling, mechanical oscillator, chemical reactor, etc, described by differen-
tial equation involving a small parameter, affecting the highest derivative term.
Singularly perturbed Initial Value Problems (IVPs)/ Boundary Value Problems
(BVPs) in Ordinary Differential Equations (ODEs) are characterized by the
presence of a small parameter (0 < ¢ < 1) that multiplies the highest derivative
term. Solution of such problems exhibit sharp boundary and/or interior layers
when the small parameter ¢ is much smaller than 1. The numerical solution

Received July 6, 2009. Accepted October 7, 2009. *Corresponding author. The third author
wishes to acknowledge the Council of Scientific and Industrial Research, New Delhi (INDIAJ}, for its
financial support.

® 2010 Korcan SIGCAM and KSCAM.

109



110 A. Tamilselvan, N. Ramanujam, R. Mythili Priyadharshini and T. Valanarasu

of such problems exhibit significant difficulties, particularly when the diffusion
coefficient is small. Therefore, the interest in developing and analyzing efficient
numerical methods for singularly perturbed problems has increased enormously
(see [1, 2, 3, 4] and the reference are therein). Parameter-uniform numerical
methods have been developed for a single singularly perturbed differential equa-
tion, but for system of equations, only few results are reported in the literature,
even though, the coupled system of differential equations appear in many ap-
plications, notably optimal control problems and in certain resistance capacitor
electrical circuits.

Robust parameter-uniform numerical methods for a system of singularly per-
turbed ordinary differential equations have been examined by a few authors [6]
- [15]. Matthews [6], examined a Dirichlet problem for a system of two coupled
singularly perturbed reaction-diffusion ODEs. It is shown that a parameter ro-
bust numerical method can be constructed which gives first order convergence.
Valanarasu et al. [8] considered the same problem and they suggested an as-
ymptotic initial value method. This method involves solving a set of IVPs and
terminal value problems by fitted operator method. In [10], a parameter-uniform
finite difference method for a system of coupled singularly perturbed convection-
diffusion equations is presented. It is proved that the scheme converges almost
first-order uniformly with respect to the small parameter. In [14], the author
considered a system of reaction - convection - diffusion type equations. The
author briefly summarized the stability and convergence results for (upwind)
finite difference discretization. In [15], a system of coupled convection-diffusion
equations having diffusion parameters of different magnitudes is discussed. A
robust convergence with respect to the perturbation parameters is obtained. In
[12], the author presented a computational method for a weakly coupled system
of singularly perturbed reaction-diffusion equations with discontinuous source
term.

While many finite difference methods have been proposed to approximate
such solutions, there has been much less research into the finite-difference ap-
proximation of their derivatives, even though such approximations are desirable
in certain applications (flux or drag). It should be noted. that for convection-
diffusion problems, the attainment of high accuracy in a computed solution does
not automatically lead to good approximation of derivatives of the true solution.
In [4], for singularly perturbed convection-diffusion problems with continuous
convection coefficient and source term for single differential equation estimates
for numerical derivatives have been derived. Here the scaled derivative is taken
on whole domain whereas N. Kopteva et al. [16] have obtained approximation of
derivatives with scaling in the boundary layer region and without scaling in the
outer region. R. Mythili Priyadharshini et al. [13], have determined estimate
for the scaled derivative in the boundary layer region and non-scaled derivative
in the outer region for the system of singularly perturbed convection-diffusion
equations with Dirichlet boundary conditions.



Parameter-uniform numerical method for a system of convection-diffusion equations 111

Motivated by the works of [5, 9, 10, 11, 13], in this article, we consider the
following class of problems:

Lij = —eyf — ar(z)y) +bii(x)yr + bia(@)y2 = fi(2), (1)
Loy = —eyl) — ax(z)yh + bor (T)yy + baz(z)y2 = f2(z), T €Q,
with the boundary conditions
{Bloyl (0) = Broy1(0) — eB11¥1(0) = A1, Briyi(l) =y (l) + v29,(1) = Bu, 2)
Baoy2(0) = B20y2(0) — eB2195(0) = A2, B2y (1) = ya1y2(1) + v2295(1) = Ba.

Assume that

a1(z) 2 a1 >0, ax(z)>as>0,
bia(z) <0, bai(x) <0,
{bu(.T) + b12(£€)} Z 0, {bQQ(I) -+ bgl(x)} Z 0,

where § = (y1,¥2)7, v1, %2 € C°(Q)NC?(Q) and the functions a;(x), fi(z), b;;(z)
are sufficiently smooth on Q, Q@ = (0,1), 0 < e <1, Bj0, 851 > 0, Bjo +£6j1 > 1,
e = 0 and vj1 — ;2 > 1, for 4,5 = 1,2. Let @ = min{ai, az}. The above
system can be written in the matrix form as

L1y - .
Ly= ( 1%) = "Fd Odz 7—A(@)7 +B@)y= f(z), z€Q,
L2y 0 —€m

with the boundary conditions
() (). (228)- )
Baoy2(0) Ay )’ Byyo(1) By)’
where

Alz) = (al(w) 0 )7 B(z) = (bu(fv) b12($)>’ Fla) = <f1($)>'
0 ax(z) ba1(z)  baa(x) fo(z)

The present paper extends the results available in [5] for a single one - dimen-
sional singularly perturbed convection-diffusion equation with mixed boundary
conditions to a weakly coupled system of two singularly perturbed convection-
diffusion equations with mixed boundary conditions. In this paper, we obtain
parameter-uniform approximations not only to the solution but also to its deriva-
tives. Thus in this paper, motivated by the works of [9] and [16], bounds on the
errors in approximating the first derivative of the solution with a weight in the
fine mesh and without a weight in the coarse mesh are obtained.

Through out this paper, C denotes a generic constant (sometimes subscripted)
is independent of the singular perturbation parameter ¢ and the dimension of
the discrete problem N. Let y : D — R, D ¢ R. The appropriate norm for
studying the convergence of numerical solution to the exact solution of a singular
perturbation problem is the maximum norm |y||p = sup |y(z)|. In case of

x€D

vectors , we define |§(z)| = (jy1(2)|, [y2(z)])T and |F|ip = max{||y:]|p. lv2(p}-
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2. Preliminaries

In the following, the maximum principle, stability result and derivative esti-
mates are established for BVP (1)-(2).

Theorem 1 (Maximum Principle). Suppose that a function
§(2) = (1(2), 12(2)”,  y1,32 € CX(Q)NCHQ)
satisfies Bjoy;(0) 2 0, Bjiy;(1) >0, for j = 1,2 and Lj(z) >0, Vz € Q. Then
glx) >0, Vx e Q.
Proof. Define 3(z) = (s1(x), s2(z))7 as
s1(z) = s2z) =2 — z.

Then s1, 53 € C(Q)NC?(Q), 5(z) > 0, for all z € © and L(z) > 0, z € Q. So,

we further define
zeQ §1 zef S2

Assume that the theorem is not true. Then p > 0 and there exists a point zg € f__l,
such that either (5%)(zo) = p or (52 )(x0) = p or both. Also (§+ us)(z) =0,
vz € Q.
Case (i): (y1 + us1){(zo) =0, for g = 0. It implies that (y; + us1) attains
its minimum at xgy. Therefore,
0 < Bio(y1 + ps1)(Zo)
= Bro(yr + pus1)(@o) — €Br1 (w1 + ps1)’ (zo)
<0,
which is a contradiction.
Case (ii): (11 + ps1)(zo) =0, for zo € Q. It implies that (y; + us1) attains
its minimum at xzy. Therefore,
0 < Lyjy(x)
= —e(y1 + ps1)"(z) — ar(2)(n
+ ps1)'(x) + bia(@) (v + ps1)(@) + bia(@)(y2 + us2)(z)
<0,
which is a contradiction.
Case (iii): (11 + us1){zo) =0, for zg = 1. It implies that (y; + ps1) attains
its minimum at xg. Therefore, -
0 < Bui(y: + psi)(wo)
= y11(y1 +181)(20) + 112(y1 + ps1)’ (o)
<0,

which is a contradiction.
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Case (iv): (y2 + ps2)(zg) = 0, for 29 = 0. Similar to Case(i), it leads to a

contradiction.

Case (v): (y2 + ps2)(zo) = 0, for 7o € Q. Similar to Case(ii), it leads to a
contradiction.

Case (vi): (y2 + us2)(zo) = 0, for zo = 1. Similar to Case(iii), it leads to a
contradiction.

Hence §(z) > 0, Vz € Q.

In the rest of the problem for continuous case the norm | - || means | - ||g.
Theorem 2 (Stability Result). If y1,y2 € C%(Q) N C%(Q) then for j =1,2
ly;(2)] < Cmax{|Bioy1 (0)1, [ Bi1ya (D1, [ B2oy2 (0], | Baryz (1), [ Laglle, 1 L2dll e},

where z € .
Proof. Set
M = Cmax{|Bioy1(0)], | Bi1y1 (1)|, | B2oy2(0)|, | B2ry2(1)], [| L17lle, | L27 ]l }-

It is easy to see that
M (2810 + €811, 2820 + €621)” % (Bioy1(0), Baoy2(0))T
and

M (111 = 12,71 = Y22)T £ (Bu1wi(1), Baiya(1))7

are non-negative. Further

LMQ2-z,2-2)" £§(z)) = MA(z) + M(2 — ) (2;8 1 lgzgg) + f(z)

MOtl + fl(.’E) P
z <Maz ifz(w)) =0

by a proper choice of C. Applying Theorem 1 implies that M (2—=, 2—z)+5(x) >
0,z € Q, and the desired result follows.

Lemma 1. Let § = (y1,y2)" be the solution of (1)-(2). Then, for j =1,2
1) < Ce* max{l£]l Igl},  for k=1,2

51 < = max{ | £ 11211 1911

where C' depends on llal], flazll “‘1/1“; “al2”) b1all, forzll, 10511, ”b112“’ [lB21ll,
[1b2all, 1511 and ||y,

Proof. Using the technique adopted in [4, pp. 44.45], the present theorem can
be proved.
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The sharper bounds on the derivatives of the solution are obtained by de-
composing the solution § into regular and singular components as, j = ¥ + 0,
where ¥ = (v1,v2)T and @ = (wy, w;)T. The regular component ¥ can be writ-
ten in the form v = Vg + €01 + 82’1—)2, where Uy = ('UO]_,'U()Q)T, U = (1)11,’()12)T
Ty = (v21,v22)7 are defined respectively to be the solutions of the problems

A(z)v) + B(2)ty = f(z), z € Q,
Br1ivo1(1) _ (Buyi(1)
(321002(1)> - (Bmyz(l))’
A(2)¥, + B(z)o, = <T" f ) Do,

dz?
(311011(1)) -0
Bsiv12(1) ’

d2
— T2 —
L'U2 =|d 42 ) V1,
0 dz?

(3101)21(0)) — 35 <311U21(1)) -3
Baov22(0) " \Ba21v2a(1) '
Thus the regular component ¥ is the solution of

Lo = f(z), z € Q (3)

<B10v1(0)) _ (Bmvm(o) +€(Blbv11(0))) , (anl(l)) _ (B“yl(l)> (4)

Baov2(0))  \ B2ovo2(0) + £(Baov12(0)) By1v2(1) Bo1y2(1)

Then the singular component w is the solution of .
‘ L =0, &)
Biow1(0)\ _ [ Bioy1(0) — Biovi(0) Bnwi(1)\ =
= , =0. (6)
Baow2(0) Baoy2(0) — Baov2(0) Bojwa(1)

The following lemma provides the bound on the derivatives of the regular and
singular components of the solution . '

?

Q,
N

=]

and

=]

Lemma 2. The solution §j can be decomposed into the sum § = U+ w, where, T
and W are regular and singular components respectively. Further, these compo-
nents and their derivatives satisfy the bounds for j =1,2
v < 1 +e>7F), k=0,1,2,3,
and
le.k)(x)[ < Cekemow/e | =0,1,2,3, Vzef

Proof. Using appropriate barrier functions, applying Theorem 1 and adopting
the method of proof used in [4, p. 46], the present lemma can be proved. O
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3. Discrete problem

The system of BVP (1)-(2) is now discretised using a fitted mesh method
composed of a standard finite difference operator on a fitted piecewise uniform
mesh

QY ={z;| 2 =2i0/N,0<i < N/2; &; = 2,1 +2(1—0)/N, N/24+1 < i < N}

condensing at the boundary point g = 0 with two different mesh widths h =

%" and H = W The transition parameter ¢ is chosen to satisfy o =

1 2
min{g, Eg InN}. The resulting fitted mesh finite difference method is to find
Y(z;) = (Ya(z:), Ya(2:))T fori=0,1,2,..., N such that for z; € QY
L{V}_’(acl) = —852Y1 (J)l) — a1 (CEI)D+Y1 (JIZ)
+b11(z)Y1(z:) + bra(ws)Ya(z:) = fi(z),

(7)
LYY (z;) = —e0%Ya(x;) — ao(z;) D Ya(x;)
+bo1(2:)Y1(2s) + bao(zs)Ya(zs) = falwi),
BN Y1(z0) = BioYi(wo) — b1 DY (o) = A1,
(8)

( )

B{\{Yi(m]\;) = 711Y1(~'L'N) + ’leD_Yl(IIZN) = Bl,

Bé\(f))fg(:ﬂo) = ,BQOYQ(QT()) - 5ﬂ21D+Y2(.’L‘0) = AQ,
( )

B Ya(zn) = v21Ya(zn) + Y22 D Yo(zn) = Ba.
The finite difference operator 42 is the central difference operator defined as
(DY — D7)U;(=:)

82U (z;) = , forj=1,2
(@) (i1 — xi—1)/2 o

where
U@iry) = Us(zi) o D Uj(x) = Uj(@i) = Uj(zi1)

DYU(x;) =
(@) Tiy1 — T Ti— Tio1

The difference operator LY can be defined as for T; € Qé\’ ,

s (36)

- <_3& _352> Y(zi) = Az) DTY (@) + B@)Y (z;) = Flxs),

G = () G =)
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3.1. Numerical solution estimates. Analogous to the continuous results
stated in Theorem 1 and Theorem 2 one can prove the following results.

Theorem 3. For any mesh function ¥(z;) assume that

Bjy¥;(zo) >0, BNU;(zn)>0
forj=1,2 and IN¥(z;) >0, foralli=1,...,N — 1. Then ¥(z;) >0, for all
i=0,1,...,N.

Proof. Define S(z;) = (81(xs), S2(2:))T as Si(z;) = Sa2(z;) = 2 — ;. Then
S(z;) > 0 for all z; € QY. So, we further define

€ = mo{ mex (G2)(m), s (S75)(e0) ).

Assume that the theorem is not true. Then £ > 0 and (¥ + 5')( ;) = 0. Further
there exists a i* € {0,1,2,..., N} such that (¥ + £5)(z;+) > 0 and we consider
the following cases:

Case (i): (U + £S)(xi-) =0, for +* = 0. Therefore,
0 < Bj(¥1 +£81)(ws)
= B10(¥1 + £81)(i+) — €11 DY (U1 + £51) (i)

- (¥1 +&81)(Tir1) — (¥1 + ES1) (i)
= —gfn
Tix41 — Ty4*

<0,

which is a contradiction. Similarly B3 (W3 +£82)(z;:+) < 0, which
is_aga,iri a contradiction.
Case (ii): (¥ +£S)(zi») =0, for 0 < i* < N. Therefore,
0 < LY(¥ +£5)(z:r)
= —e6?(¥1 + £81)(2s+) — ar(@s-) DT (1 + £81) (v
+011(¥1 + £51) (@) + br2(P2 + €52)(wi+) <0,
which is a contradiction. Similarly LY (¥ +¢85)(z;-) < 0, which is
again a contradiction.
Case (iii): (¥ + £S)(z4+) =0, for i* = N. Therefore,
0 < Biy(¥1 + £S1) (i)
= 711(¥1 +E€S1) (@) + 712D~ (¥ + £S1) (i)
_ o (W +ES1)(mir) — (W1 +E81)(@ie—1)
= M2 <0

Tix — Tix—1

*

which is a contradiction. Similarly, By (¥3+£82)(z;+) < 0, which
is again a contradiction.

Hence ¥(z;) >0, Vz; € OV,
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Theorem 4. Consider the scheme (7)-(8). If Z(x;) = (Zy(x4), Zo(x:))T is any
mesh function then, for all z; € QY

1Z;(z:)] < Cmax{|BZ1(z0)], |BY Z1(xn)|, | BN Z2(20)], | B} Zo(zn)],
|L1 ( Dl 1$IH&X le Z(%)I} j=12.

1<1<N 1
Proof. Set
M = Cmax{|BlyZ1(zo)l, |Bf} Z1(en)l, | BY Z2(0)), | B Za(an)],
e 1LNZ@] | 182G,

Define the mesh functions

g (M2 2)
W (z,) = (M(2 B ml)> + Z(x;).

Then we have
BRLWF(z0) >0, BNW; (zn)>0 forj=1,2
and LYW= (z;) > 0. By Theorem 3 we get the required result.
The discrete solution Y (z;) can be decomposed into the sum
Y (z;) = V(z;) + W(z;)

where V (x;) and W (z;) are regular and singular components respectively defined
as

LYV(z) = f(z:),i=1,...,N~1, (9)
BNV1(.’L‘()) _ Bl()’Ul(O), B{\’lVl(xN) . BU'U](].)
(Bé\z‘@(%)) - (320’02(0)) ’ (le\{‘/é(wzv)> a (B21U2(1)> 10)
and
L"W(z;)=0,i=1,...,N—1, (11)
B%Wl(l‘()) _ wal(O), B Wl(acN) &
() = (@) (Bimaey) =0 @

The error in the numerical solution can be written in the form
Y = §)(x:) = (V= 0) (@) + (W —w)(z).

Lemma 3. At each mesh point ; € QY the regular component of the error

satisfies the estimate
= _ _ 0(2 - IL'Z')N——l
7 - ol < (G~ 2N

where ¥ and V are the solutions of (3)-(4) and (9)-(10) respectively.
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Proof. We have
| Bio(Vi = v1)(o) | = |Bro(Vi — v1) (o) — BrieDT (Vi — v1)(zo)]
< CBue(mipr —z)vf? | <CNT!
and
| BIN(Vi —v1)(@n) | = (Vi —v1)(@w) + 112D (Vi — vr)(ew)|
< Cyia(zi — zim1) 0P| < ON7L

Similarly, B (Vo — v2)(zo)] < CN~Y and |B(Va — va)(zn)| < CN~'. By
standard local truncation error estimate and Lemma 2, we have

[LY(V; —v;)(=:)| SCN7Y, j=1,2.

Using the barrier functions

Ut (z;) = (gg ~ i;x:) + (V- 0)(z:)

and applying Theorem 3, we get ¥*(z;) > 0, for allz; € QY, which completes
the proof.

Lemma 4. At each mesh point x; € QY , the singular component of the error
satisfies the estimate

-1
07~ 0w < (Gr-pnn)

where w and W are the solutions of (5)-(6) and (11)-(12) respectively.
Proof. We have
|Blo(W1 — w1)(@o)| = |Br0(W1 — w1)(20) — BraeD* (Wy — w1) (o)
< Bue(@ivt — i) lwy(zs)]
<CN 'lnN
and
|BIN(W1 ~ w)(@w)| = [y11(Wi — wi)(@n) + 12D~ (Wh — wi)(@n)|
< Ma(@s — zi-1)|wy (wi)]
<CN~L
Similarly, we have
|Boy(W2 —wa)(x0)] S CN'InN and |BM(Wa —ws)(zn)| < CN™L

We consider first the case 0 = § and so ¢! < CInN and h = H = N~ L.

By classical argument and using Lemma 2, we obtain |LYV (W — @)(z;)] <
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Ce 2N ~le~*%i-1/2 We introduce the mesh functions

Cehe _1ar-1 1
_ e "N~ HYi(x;) + — _
TE(2;) = (3(;%;?/1 . _1( 1) ” )> + (W — o)(z:)
Ce e~ AN (Ya(zi) + 1)
where 7 is any constant satisfying 0 < v <  and

N AVt (yy2 /mie) — 1
@) = BL(AN + (vy2/me) — 1) + Boy AV’

where A = 1+ 2%, 8 = min{Bo, Ba0}, B2 = min{B11, Fo1}, M1 = min{m1, 121},
vo = min{vy12, 22} and let Ya(x;) = Yi(z;). It is easy to see that for 1 < i <
N -1,

(€62 + ¥DT)Y1(z;) = 0,
BiY1(x0) — €82 DTY1(20) = 1, nYi(zn) + 72D Yi(zNn) =0
and DVY;(z;) < 0. Then we have
B{\¥T (20) = BT (w0) — efn DT (o)
2vh/e
Z Le_lN_l(ﬂ1Y1($o) - 6,82D+Y1 (ZL‘()) + &) + CN_l InN
Y(e =) g

>0,

BV UE(zn) = mi¥T (@n) + 712D T ()

C 2vh/e

> 28 S IN"YmYi(an) + 12D Yi(an) + 2) £ CNT!
(o =) o

>0

and
LYVOE(2;) = —e029F (2) — a1 () DT OE ()
+ b11($i)\1/:1t($i) + blg(aci)\llf(mi), x; € Qé\]
Cquh/e
> ————6_1N_1(—€52Y1 (.’131) - al(xi)D+Y1(x¢) + b11(.’137;)(Y1 (il?z)
Y(a =) -
1 . )
+ =) + bia(zy) (Ya(;) + —)) £ Ce 2N~ lemomimn/e
8! 71
Ce2~/h/s L
- ¢ IN"Y~(a—~)D"Yi(z;
= ’7(01—’7) ( ( 7) 1( )
1 —QLG— &
+ (bn(l‘i) + blz(wi))(Y1(xi) + —’Y_)) +Ce?Nte i1/
1
> 0.

Similarly,

BYUF(x0) 20, BNUs(zn) >0, LYT*(z:) >0, z €0l



120 A. Tamilselvan, N. Ramanujam, R. Mythili Priyadharshini and T. Valanarasu

Hence by Theorem 3, we get ¥+ (x;) > 0, which leads to the required result.
Now consider the case ¢ = EE—ln N. Suppose that z; € [0,1]. Using the
triangle inequality we have |(W < w)(z;)| < |W(z;)| + |@(z;)|. Using Lemma 2,
CN—2
CN—2

mesh function Y;(x;), which is the solution of the constant coefficient discretised
problem

we have |@{z;)| < ( ) . To obtain a similar bound for |W (z;)|, consider the

e6*Yi(z;) + oD Yi(z;) =0, i=1,...,N -1,
Yi(zo) =1, mYi(zn)+12D Yi(zn) =0,

where 7, v2 are defined as before and further let Yz(z;) = Yi(z;). Also,
DVYi(x;) <0,for0<i < N —1. Let

B = max{|BioW1(zo) — €811 DT Wi (20)[, | B20Wa(z0) — €620 DT Wa(zo)|}
and introduce the mesh functions
TN ﬁYl(xi)) S0
T (z,) = (mfg(zi) + W (zy).
Then we have
B UT (z0) = Bro¥5 (o) — e/ DT (xo)
> B(B10Y1(z0) — €11 DT Y1(x0)) = B, Wi(z0)
>0,
BNV (zn) = iV (zn) + D™ U (zn)
> BlnmiYa(zn) + 2D~ Yai(zn) £ BiyWi(zn)
=0
and
LYWE(z;) = —e020E (2) — a1 () DY OE (1)
+ bll(xz)\Ilit(a:z) + blg(x,)\IIQi(a:l), x; € Qév
> B(—e6°Yi(z;) — a1 (z:) DT Yi (i)
+ b1y (20)Y1(2) + bia(z) Ya(wi)) £ LY Wi(w;)
> B(—=(a1(z;) — @)DTYi(z;) + (b1 (m:) + biz(z:))Ya (z4))
> 0.

Similarly,

BRUT(z0) >0, BN YE(zy) >0, LY¥H(z;) >0, z; € Q.
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Using the procedure adopted in [5, Lemma 4.2] and hence by Theorem 3, we get-
- BYi(zi) CN~?
Wiz;)| < < , T ; € [o,1].
W (z:)| < (5Y2(azi) <\ oyn-2) for @ [0, 1]
Now for z; € [0,0), the proof follows the same lines as for the case 0 = 1/2,

except that we use the discrete maximum principle on {0,0] and the already

. = CN—2
established bound |W(zy/2)| < ON-2

For all 4, 0 <7 < N/2, we introduce the mesh functions

). We now present a detailed proof.

Ce2rh/e

-1 -1 . -2
(e = [ fa s N nlm) BN ) = OV - @) ()
Ce - e IN 1Yy (a,) + CoN -

where Y1 (z;) is the solution of the problem
e8?Yy(x;) +vDYi(z;) =0, i=1,...,N -1,

BrYi(zo) — 2D Y1(z0) =1, mYi(zns2) + 12D Yi(zn/2) =0

and v, 81, B2, 11, Y2 are defined as before.
Thus, for all i, 0 <1 < N/2,

_ M 4 (e /me) — 1

eAN2 4 (vy2 /mig) ~ 1]
where, A =1+ % and DY (z;) < 0. Let Yo(z;) = Yi(z;). It is easy to show
that BYUT (zg) > 0, BNV (zny2) > 0, for j = 1,2 and LY ¥*(z;) > 0, for

0 < i < N/2—1. Then by Theorem 3 we get ¥*(z;) > 0. Thus we get the
required result.

Y1 (331)

Theorem 5. Let j(z) = (y1(z),y2(2))” be the solution of (1)-(2) and let
Y(x;) = (Yi(x:),Ya(z;))T be the corresponding numerical solution of (7)-(8).
Then we have

sup |Y1 —yilloy SCN 'InN and  sup ||[Yo—flagv <CN“!'InN.
0<e<1 € 0<e<1 ‘

Proof. Proof follows immediately, if one applies the above Lemmas 3 and 4 to

Y-g=V-0+W —w.

4. Analysis on derivative approximation

In this section, we give an e—uniform error estimate between the scaled deriv-
ative of the continuous solution and the corresponding numerical solution in the
fine mesh region. Further, in the coarse mesh, an estimate is obtained without
scaling the derivative.

We note that the errors

ej(x:) = Yi(x:) — y;(@i),
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satisfy the equations
[e6°+a;(z:) D e;(x:) = [bj1{zi)er(x;)+bj2(xs)ea(xi)] —truncation error,j = 1,2

where, by Theorem 5, [bj1(z;)e;(z;) + bj2(z:)ez(z;)] = O(N~'InN). In the
proofs of the following lemmas and theorems, we use the above equations, they
are necessary single equation. Hence the analysis carried out in [4, §3.5] for single
equation and [13, §4] for system of equations can be applied immediately with
a slight modifications where ever necessary. Therefore, proofs for some lemmas
are omitted; for some of the theorems short proves are given.

4.1. Numerical derivative estimates.

Lemma 5. For each mesh point x; € Qév U {0} and all z € Q = [zi, Tit1], we
have

le(D*y;(x:) — yj())| < CN~'InN, for z <o, j=1,2,
and
|D+yj(xi) - y;(.%‘)| < CN_17 for x>0, j=1,2,
where (y1(z), yo(x))T is the solution of (1)-(2).
Lemma 6. At each mesh point z; € QY U {0}, we have for j =1,2

+ T . < - -1 + . i < N_l,
B [eDH(V=u)@)| SONT and_max | [D*(V;—v;)(z)| < €

where v; and Vj are the solutions of (3)-(4) and (9)-(10) respectively.

Proof. We denote the error and the local truncation error, respectively at each
mesh point by e;(z;) = Vj(x:) — v;(z:) and 75(x;) = L} e; (), forj = 1,2. Since
lej(z;)] < CN~Y, we have

leD* e (@ _1)| = Ie(ej(xzv) - ej(xN—l))l < CeN-L. 13)
IN —IN-1

Now we write 7;(z;) = LY e;(z;) in the form,

eDTej(zx) — eDVej(zp-1) + %(xlﬂ-l — zk-1)aj(zk) D ej(xk)
= 5 (nrt = i) ([Bys(or)en (or) + bia(on)ea(on)] = 73(a0))

Summing and rearranging for each 7, 0 <i < N — 1, we get

N-1
1
leD*ej(@)l < leD¥ejlan-1)l +5 D (@r+1 = zha)(I7 (@)

k=i+1
+ |[bj1(zr)er(zx) + bja(zk)ea(zk)]])
N-1
+ I% > (@ra1 = zi-1)a (k) D e ().

k=i+1
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Using the telescoping effect for the last term, |e;{z;)| < CN~! and |la}|| < C,
we get forall i, 0 < i < N,

|€D+ej(:vi)| S CN_I. (15)

Over the region [0, o), the result follows immediately from (15}.
For ¢ > N/2, we rewrite (14) in the form

(1 + pk)D+ej(xk) = D+€j($k._1)

16
+ =25 (b1 (er)er (2r) + bya(ar)ea(xx) — (k) 16)
a; (k)
where p, = %(@k) (T = xk_l). Summing these equations from £ = 1 to

k= N/2, we get

1+ p)-(N/2=1) - _ ah
|Dej(0)| < |D+€j($0)|'(—Tp%‘W +CN'<CNTY, p= -
Summing the equations in (16) from k= N/2 to k =i < N, we have
1+ p)~(—%-D _ . _ aH
|D¥ej(@)] < |D+6j(0)|(—‘—q)";‘p— +CN'<CN™Y, p= —
(3

which completes the proof.

Lemma 7. For o = 1/2, we have for all z; € QY

le(W; —w;)(z)] <CQ2—-z)N"'IaN, for j=1,2,
where w; and W; are the solutions of (5)-(6) and (11)-(12) respectively.
Proof. Use the barrier functions

N C.—2(9 _ . \N—1 -
\I/:t(.’lii) = (&E_QEE _ zz;x_1> == (W - ’lf))(:l?l)

«

to establish the required bound.

Lemma 8. At each mesh point xz; € QY U {0}, we have for j =1,2

DY(W; —w)(z))| < CN~'InN
ogrggﬁmle (W —wj)(zi)] < n

and

W — w )] < -1
N/I2n§ai)iN|D (Wj —wj)(z:)] SCN™,

where w; and W; are the solution of (5)-(6) and (11)-(12) respectively.
Proof. Consider the case z; > o. From the particular choice of transition pa-

rameter, we have for j = 1,2, |W;(z;)| < CN~2 and |w;(z;)| < CN~2, for all
z; 2 0. Hence for j =1,2

\DT(W; — w;)(z;)| <CN7, @ € o, 1]
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For z; = o, we write LYW (o) = 0 in the form

+H

h
€D+W1(93N/2_1) =€D+W1(0') + al(U)D+W1(O')

+ 5b13(0)(h+ HYWA(0) + o)+ H)Wa(o).

Using the estimate obtained at the point o and from the proof of Lemma 4,
we obtain |[eD*Wi(xn/2-1)] < CN~!. Now consider z; € [0,0). For con-
venience we introduce the notation &;(z;) = (W; — w;)(z;) and #(z;) =
LYé(zs), j=1,2. We have already established that

|&j(z)l <CN 'InN and |#(z:)| < Coe 2N~le-o%i-1/e j =1 2. 17

We write the equation 7;(x;) = LY é(z;) in the form

D (&) = &(21-1)) + 30528 (@hs1 — ze)D*85(1)

= — 5 @h1 — 1) (o) + oy @0)é (o) + bra@n)éa(on)]

Summing these equations from z; = z; > 0 to zx = o — h, we get

|
eD"éj(x;) =D é;(znya-1) + Z a;(@r) (€ (Tr+1) — &;(z1))
k=i+1
L | 41
= D hj(m) + > [bja(r)ér(xe) + bja(zr)éz ()], §=1,2.
k=it+1 k=i

Hence using the result at the point z ~ny2—1 and (17), we have

. 1 oah/e
leDVé;(x;)] < CN~'(InN + m)

But y = ah/e = 2N~'In N and B(y) = =% are bounded and it follows that
leDté;(x;)] < CN~'InN, j=1,2 as required.
When o = 1/2, using the above arguments and Lemma 7, we get
leD*éj(z;)] < CN~'InN, j=1,2.
which is the required result.
Theorem 6. Let § be the solution of (1) - (2) and Y be the corresponding
numerical solution of (7) - (8). Then, we have for j = 1,2,

sup [e(D"Yj(z:) = i), < CN~'InN, for 0<i< N/2,
0<e<1

and

sup |DTY;(x;) - Yillo, SCNTY, for N/2<i<N-1.
0<e<1
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Proof. Following the method of proof adopted in [4, Theorem 3.17], using the
Lemmas 6 and 8 we get the required result.

Remark 1. Let l%-, 7 =1, 2, denote the piecewise linear interpolant of the finite
difference solution {Y;(z;)}X,. As done in [4, p.66], we get for j = 1,2

sup |le(DFY; - ¢))lla, < CN~'laN, enskipi = 1,...,N/2 - 1,
0<e<1

and

sup ||D*Y; - ¢llq, < CN7Y, i=N/2,...,N,
0<e<l

where, l~)+YJ(x) = D*Y}(z;), for x € [x4,7441),i=0,..., N.

5. Numerical experiments

In this section, we verify experimentally the theoretical results obtained in
this paper by two test problems.

Example 1. Consider the singularly perturbed boundary value problem :

1

—eyy (x) — myﬂ(x) +3y1(z) —pe(z) =1+z,2€9,
1 1+z

— ey (x) - m?/z(f) —y(x) + 3y2(z) = 5 ZE€ Q,

y1(0) —e1(0) =1, 251(1) + 91(1) = 1, 12(0) — e9(0) = 2, 2y2(1) +95(1) = L.5.

Example 2. Consider the singularly perturbed boundary value problem :

— e (2) = 3y1(2) + 3y1(2) — pe(w) = 1+ e,z €Q,

— ey (2) — vo(7) — p1(2) +3y2(z) = 1 —e™F, 2 €Q,

3y1(0) — ey (0) = 0,2y1(1) + 91 (1) = 1, 3y2(0) — ey(0) = 2, 2y2(1) + (1) = 2.
Let (Y{V, Y} be a numerical approximation for the exact solution (yy, y2)7”

on the mesh QY and N is the number of mesh points. Since the exact solutions

are not available for the above test problems, for a finite set of values ¢ € R, =
{2°,271 .../ 27%} we compute the maximum pointwise error for j = 1,2,

S = 1YY = V2 g

DN — max |e(DTYN —~l~)+Yj2048)(xi)], for 0<1i< N/2
| max|DrYN — DYY20#)(z,)|,  for N/2<i< N -1,

where l~fj2048 is the piecewise linear interpolant of the mesh function ¥;?%4% onto
[0,1]. From these values the e—uniform maximum pointwise difference

SN = max DN

N _ N -
i —max D, D} =maxD,.;, j=1,2

c€ER:
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are formed for each available value of N satisfying N, 2N € Rpy. Approxima-
tions to the e—uniform order of local convergence are defined, for all N,4N €
RN 3 by

N DN

rjl'v = 10g2(3%)a pé\f = logZ(DgN)a
J J

ji=1,2.

Surface plots of the maximum error for the solution as well as scaled first de-
rivative of the above test problems are presented. Figure 1 shows the numerical
solution of the Examples 1 and 2 respectively. In Figures 2 and 4, we observe
that as ¢ — 0, the maximum error for the numerical solution (Y3, ¥2)7 to the
exact solution (y1,%2)7 of the Examples 1 and 2 respectively, decreases and
gets stabilized at a constant value. Figures 3 - 5, we observe that as ¢ — 0,
the maximum error for the numerical scaled derivatives in the fine mesh region
(eD*Y1, eD1Y2)T to the exact scaled derivatives (ey), eyh)T of the Examples
1 and 2 respectively, decreases and gets stabilized at a constant value. Tables
1 and 4 present ¢—uniform maximum pointwise error and ¢—uniform order of
local convergence to the numerical solution of the Examples 1 and 2 respectively.
Tables 2 and 3 present é—uniform maximum pointwise error and ¢—uniform or-
der of local convergence to the scaled derivatives in the fine mesh region and
the non scaled derivative in the coarse mesh region for the Example 1. Tables
5 and 6 present e—uniform maximum pointwise error and é—uniform order of
local convergence to the scaled derivatives in the fine mesh region and the non
scaled derivative in the coarse mesh region for the Example 2.

Table 1.  Values of S¥, rY¥ and S§, r§ forkthe solution components
y1 and y2 (Example 1) respectively

Number of mesh points N.
| 64 | 128 | 256 | 512 1024
SV | 2.2195e-2 | 1.3034e-2 | 7.0987e-3 | 3.4194e-3 | 1.2446e-3
& | 7.6795e-1 | 8.7665¢-1 | 1.0538 1.4581 -
SIV'12.9883e-2 | 1.7628¢-2 | 9.6085¢-3 | 4.6303e-3 | 1.6857¢-3
rlY | 7.6146e-1 | 8.7549e-1 | 1.0532 1.4578 -
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Fig. 1. Approzimate solutions of the Examples 1 and 2 for e =
277 with N = 128.
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Fig. 2. Surface plots of the maximum pointwise errors as a func-
tion of N and ¢ for the solutions (Y1,Y2)T of the Ezample 1.

Fig. 3. Surface plots of the mazimum pointwise errors as a func-
tion of N and e for the scaled derivative (eDTY1,eDVY2)T of
the Example 1.

Fig. 4. Surface plots of the mazimum pointwise errors as a func-
tion of N and ¢ for the solution (Y1,Y2)T of the Ezample 2.
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Values of DY, pY and DY, p§ for the scaled derivative

components ey, and eys in the fine mesh region (Example 1) respec-

tively

Number of mesh points N

64

128 |

256

512

1024

DY
py

1.3462e-2
4.7972e-1

9.6538e-3
6.9192e-1

5.9760e-3
9.4254e-1

3.1094e-3
1.3910

1.1856e-3

TN
D,

Py

1.8066e-2
4.6470e-1

1.3091e-2
6.9477e-1

8.0877e-3
9.4174e-1

4.2105e-3
1.3904

1.6061e-3

Table 3.

Values of DY, pY¥ and DY | pY for the derivative compo-

nents y) and y, in the coarse mesh region (Example 1) respectively

Number of mesh points N
64 | 128 256 512 1024
DYV | 2.4063e-2 | 1.2373e-2 | 5.9545¢-3 | 2.5918e-3 | 8.7069¢-4
pY |9.5962e-1| 1.0551 | 1.2000 | 1.5737 -
DY | 4.8640e-3 | 2.4367e-3 | 1.1569¢-3 | 5.0026e-4 | 1.6750e-4
pY 19.9721e-1| 1.0747 1.2095 1.5785 -
Table 4.  Values of S¥, rI¥ and S¥, r for the solution y1 and y2

(Example 2) respectively

Number of mesh points N
| 64 | 128 256 512 1024
SN 1 4.7772¢-2 | 2.8723e-2 | 1.5992¢-2 | 7.6877¢-3 | 2.6599¢-3
r{ | 7.3396¢-1 | 8.4486e-1 | 1.0567 1.5312 -
S | 4.6237e-2 | 2.7172e-2 | 1.4720e-2 | 7.0696e-3 | 2:5692e-3
ry | 7.6693e-1 | 8.8434e-1 | 1.0581 1.4603 -
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Table 5.  Values of DY, pY¥ and DY, pY for the scaled derivative
components ey and eyy in the fine mesh region (Example 2) respec-
tively

Number of mesh points N

| ] 64 [ 128 [ 256 [ 512 | 1024

DY | 2.2024e-2 | 1.7972e-2 | 1.1689%¢-2 | 6.2351e-3 | 2.4096e-3
pY | 2.2563e-1 | 5.6828¢-1 | 8.9811e-1 | 1.4413 -

DY | 2.2024e-2 | 1.7972¢-2 | 1.1689¢-2 | 6.2351e-3 | 2.4096e-3
pd | 2.9333e-1 | 6.2060e-1 | 9.0667e-1 | 1.3716 -

Table 6. Values of DY, pY and DY, p¥ for the derivative compo-
nents y, and y in the coarse mesh region (Example 2) respectively

Number of mesh points N
64 | 128 256 | 512 | 1024

DY 11.7408e-3 | 9.1346e-4 | 4.7509e-4 | 2.2752e-4 | 7.3799¢-5
pY 19.3034e-1 | 9.4314e-1 | 1.0622 1.6243 -
DY 11.1142¢-3 | 5.4989¢-4 | 2.5913e-4 | 1.1159e-4 | 3.7269e-5
pY 1.0188 1.0855 1.2155 1.5822 -

Fig. 5. Surface plots of the mazimum pointwise errors as a func-
tion of N and ¢ for the scaled derivative (¢D*Y1,eDVYs)T of
the Example 2.
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