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FINITE ELEMENT ANALYSIS FOR
A MIXED LAGRANGIAN FORMULATION
OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

HonGcHuL KiMm

1. Introduction

This paper is concerned with a mixed Lagrangian formulation of the
viscous, stationary, incompressible Navier-Stokes equations

(1.1) -vAu+ (u-V)u+Vp="f in
and
(1.2) V-u=0 in Q2

along with inhomogeneous Dirichlet boundary conditions on a portion
of the boundary

0 on PO
(1.3) u=
gonly,

where () is a bounded open domain in R?, d = 2 or 3, with a boundary
I' = 92, which is composed of two disjoint parts 'y and I'y. Here, v
denotes the kinematic viscosity in the nondimensional form and f the
given external body force. Note that the constant density has been
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absorbed into the pressure and the body force. For the compatibility
and regularity for the solutions, we assume

(1.4) support of g C I'y and / g -ndl'=0.
r

g

One of the main feature of the formulation is the appearance of the
stress vector along the inhomogeneous boundary, which is given by

Ou;  Ouy

(1.5) (t); = —pn; +v > (

[

)7

along I'y, where n; denotes j-th component of the outward unit nor-
mal vector along I'y, u; and (t), components of the velocity u and
the boundary stress t. The boundary stress is an important physical
quantity representing the forces exerted by the flow along the bound-
ary of the domain occupied by the flow. In the obstacle problem or
various control problems as in [11], boundary stress plays dual role be-
ing a Lagrange multiplier supplementing the inhoinogeneous boundary
conditions as well as a physical factor balancing the state variables.
Practically, the variable for the stress was used as a control parameter
([9]) or a balancing factor to achieve optimal solutions ([11],[12],[13]).

One can regard u, p and t as independent variables. However, since
t is represented in terms of u and p, it is natural ~o consider the com-
putation of t in a post—processing procedure. For the finite element
approximation of the mixed Lagrangian formulat:on, we approximate
the boundary data using L2-projection, instead of boundary inter-
polants. Using the same meshes for the boundary stress and the trace
of the velocity to the inhomogeneous boundary, we derive optimal error
estimates for the approximation.

We close this section by introducing some notation and function
spaces that will be used in the sequel. Throughout this paper, 7 will
be used to denote the identity mapping or the identity matrix, and C
a generic constant whose value and meaning also vary with context.
For Galerkin type variational formulations, we denote by H*(€)), the
standard Sobolev space of order s with respect o the set . which
is the domain occupied by the flow, or its boundary I', or part of its
boundary. For vector-valued functions and spaces. we use boldface
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notation, i.e., H*(Q) = [H*(Q)]Y. We denote the inner product on
H*(Q) or H*(Q?) by (-,-), and its norm by || - ||, = \/(,-)s. For the
space of interest to us, we consider the semi-norm defined on H!(f)

d
_l Gvi O’UJ' 2 1/2
M=2([ b pwan) - (3 g 5t) "

where D(u) = 2(Vu+ (Vu)T) denotes the deformation tensor for the
flow u.
Let 'y be a subset of I with a positive measure. Let us define

HILO(Q) ={veHYQ)|v =0 onTIy};

H}, () is the space on which the homogeneous boundary conditions

are imposed. Note that Korn’s inequality leads to ||v|| > C|v||, for

all v.e H}, (Q). This implies that the semi-norm ||-|| is a norm which

is equlvalent to the norm || - ||, o on Hf (). By < -,- >_,, we shall

denote the duality pairing between H3. (Q) and its dual space, H.*(€2).
For the other face I'y of a LlpS(‘hltZ continuous domain {2, let

Lg )={seLl*T)|s=0 only}

and let v, : Hy (Q) — LZ(T') be the trace mapping. Let us define
H*(T'y) = v,(H} () and its dual space H™*(T,) for s > 1/2. The
duality between H™*(I'y) and H*(T,) is denoted by < -, - >_sr,. For
the given boundary force, we take

Hy(Ty) = {¢ € H*(T )|supportof¢CPgandf¢-ndF:O}.
Fg

From the condition (1.4), we assume g € H§(I',) for some s > 1/2.

Since the pressure is determined only up to a constant in the mathe-
matical formulation of the Navier-Stokes equations with velocity bound-
ary conditions, we take the space for the pressure to be

L(Q) ={pe L*Q)| /deQ =0},

i.e., L3(f) consists of square integrable functions having zero mean
over {).

When X and Y are Banach spaces, we denote the class of bounded
linear operators from X to Y by £(X;Y).
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2. The mixed Lagrangian formulation

For the weak variational formulation, we will use the forms

a(u,v) = 2/ D(u): D(v)dQ

Ou,  Ouy Ov; Oy ) L
22/( an)(azj*ax, dQ, vu, v € HY(Q),

1,7=1

d .
b(v,p):—/QpV-de:~Z/2p§:’_ dQ vve H'(Q),pe L*(Q)
i=1v! e

c(w,u,v):/(w Viu - vdQd = Z/U’Jg;hv"dﬂ
j

2,7=1

over H'(2). Obviously a(-,-) is a continuous bilinear form on H!(§}) x
H'(Q) and b(-,-) is a continuous bilinear form H'(Q) x L2(Q); also,
c(,+, ") is a continuous trilinear form on H*({2) x H}(Q2) x H'(Q) which
can be verified by the Sobolev embedding of H'(2) ¢ L4(2) and the
Holder’s inequality. Moreover, we have the coercivity property

a(v.v) > C|v|} vve Hp ()

and LBB-condition (or, inf-sup Condltlon) to balance between the ve-
locity and the pressure

b
(2.1) inf  sup P
reLi@ vem, @ VI Pl

For details concerning these forms and their properties, one may con-
sult [7], [11] or [14].

Based on this notations, let us first consider the classical weak for-
mulation of the Stokes problem;
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For a given g € H(l)/Q(Fg), find u and p satistying
p

a(u,v) +b(v,p) =<f,v>_; VveH}Q),
bu,q) =0 Vg L3(Q),

0on Iy
u=
gonly.

(2.2)

The well-posedness of the system provides a well-known a priori esti-
mate (cf. [7]);

lully + llpllo.e < CUIEN-1 + llglhy2r,) -

Moreover, if {2 is a convex polyhedral domain and I'g and I, are disjoint
faces of I" = 012, this estimate can be extended to

lullz +llpll: < CUIfllo + llglls/2r, ) -

Lagrange multipliers can be used to relaxate the constraints for the
incompressibility constraint and inhomogeneous boundary condition.
Let us consider the following saddle point probleimn:

inf sup &(v, (q, ,
inf supE(v. (3.1)
where £(-,+) is a Lagrangian defined by
1
g(v7 (Q7n)) = §a(v7v) + b(V,(]) - < f,V >aa-—<npv—-g >—-1/2,[‘9

in the space Hf, () x (L§(Q2) x H™Y/2(T';)). Then, the saddle point
(u,{p,t)) of £ satisfies
a(u,v)+b(v,p)— < t,v > 1o, =< f,v>_1,

bu,g) - <mu>_jppr =<1g >-1/2,0,

for all v € Hf () and (¢,1) € L3(Q) x H~V/2(T',). Note that this can
be equivalently written in the form;

(2.3)

a(u,v) +b(v,p) = <t,v>_ipp,=<f,v>_; ¥ve HIl«O(Q),
(2.4) b(u,q) =0 Vg e L3(9),
<nu>_ypor, =<m,8>_1/2r, ME le/z(rg) :

Let us first state the existence of a solution for the specified system
(2.3) or (2.4) for the Stokes equations, whose existence and uniqueness
depends on the following two Lemmas.
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LEMMA 2.1. (Lifting of H'/2(I',)) Let Q be Lipschitz continuous.
Let (q,1) € LE(Q) x HY2(T,). Then, there exists w € H}, () such
that

V-w=¢qin{2
(2.5)

w:]:‘l(n) onTy,

where 7 : H/2('y) — H~Y/2(T)) is the inverse of the Riesz repre-
sentation mapping, i.e.,

<n€> 10, =<F '(M).&>10r, VpeHYAT,),

and ||9||_1/2r, = Hf‘l(’))lll/zrg .
Moreover, there exists a positive constant C such that

Iwile < Clllallo + lInll-1/2,r,) -

Proof. See, e.g., [11] and [15]. O

Let us state the augmented LBB condition coupling the Lagrange
multipliers p and t along T'y. Let us denote M =: L3(0) x HY/3(T,)
and its dual by M*,

LEMMA 2.2. (Augmented LBB condition) For every (¢,9) €
M*, there exists a constant C' > 0 such that

b(w,q)— <n,w>_y/,or
(26)  Cl(g,mlm- < sup /2T
weH] (), w#0 llwlls

Proof. Let (q,m) € L3(92) x H~Y2(I'y) be given. By Lemma 2.1,
there exists w € Hf, () such that V-w = —¢in Q, w = —F~1(5) on
I'y and |[wil1 < C(ligllo + [Inll-1/2,, ). Hence, it follows that

bw.q)— <nw>_1pr, = lalf + 1F @30,
= llallg + Il j2.r,
> Clligllo + llmll-1/2,0,) 1wl - .
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For the sake of brevity, set V.= Hf, () and M = LE(Q) x HY/2(T,).
Let B: V — M be a bounded operator defined by

< BW, (q’ 7)) >MXM‘ =< vaT(q;n) SV xV*

(2.7) _
=bw,g)—<nw>_15r, .

Lemma 2.2 implies that

1B (g, mllv- > Cll(gMlm- Vg, n) € M,

whence ||BY)|qe;ve) = C.

Using this relation, we easily conclude that B has a closed range in
M and is surjective due to Lemma 2.1.

Let us show the existence of the solution of the system (2.3) or (2.4).

THEOREM 2.3. Suppose b(-,-) satisfies the LBB condition (2.1).
Then, given (f,g) € HITOI(Q) X H(l)/Q(Fg), there exists a unique so-
Iution (u, (p,t)) € H} () x (L(Q) x H~Y2(T,)) satisfying (2.3) or
(2.4).

Proof. Using (2.7), (2.3) can be rewritten as

a(u,v)+ < Bv,(p,t) >=<f,v>_, ¥YWweV,

(2.8) .
<Bu,(g,n)>=~<ng>_12r, VY(rneM".

Since u = 0 on T, it is easy to check that ker B C Hy, (f2). Since

va(-,-) = ||| is equivalent to || - ||, it is obvious that a(-,-) is coercive
over ker B. So, combined with condition (2.6), the existence theorem
for the abstract mixed formulation yields the result. O

From the well-posedness of (2.3). the following estimate immediately
follows:

lally +lipllo + Itll-1/2r, < CUIEI-1 + llglli/2r,) -

Note that the saddle point p corresponds to the pressure, i.e., the
pressure can be interpreted to be a Lagrange multiplier to relax the
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incompressibility constraint. To physically interpret the term t for the
Lagrange multiplier, we note from Green’s formula that

/f-de: / (— Au+Vp) vdQ
Q JQ

_! ‘u w)?) (Vv 4 (vv)T - vd
=5 [ (Vut (V) s (9v 4 (7)) a0 | pv v

- / n (—pZ + (Vu+ (Vu)¥) - vdr
r

g

zqmw+Mmm—/f«—ppuvu+w@5)qg>wﬂi

I‘g
Hence, compared with (2.3), the Lagrange multiplier t is given by
t=(-pZ+(Vu+(Vu)")) n=-pn+2D(u)-n onl,.
Adding the convective term to the first equation of (2.3) or (2.4),

we obtain the corresponding formulation of (1.1)-(1.3), which can be
written in the form

va(u,v)+b(v,p) — < t,v > pr,=<f-(u Viuv>_, vwveV
and
b(u,q) — <nu > 120, =< N8> _1/2r, v(g,n €M,
Equivalently, it can be written as

va(u,v) +b(v,p)— < t,v >_1/2T1,

29

2.9) =<f,v>_ | —c(u,uv) vveH] (Q),
(2.10) blu,q) =0 Vqe Li(Q)

and

(2.11) <nu>_ipr,=<n.8>152r, VME H—1/2(P9) -
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Note that in this case, the corresponding Lagrange multiplier is given
by

t=(-pI+v(Vu+(Vu)")) -n=-pn+2vD(u)-n onT,,

which is the stress vector on I'y. Hence the boundary stress along
I'g plays the role of a Lagrange multiplier in enforcing the essential
homogeneous boundary condition along T'g. For this reason, the vari-
ational formulation of the form (2-9)-(2-11) is called the mized La-
grangian formulation for the stationary incompressible Navier-Stokes
system incorporating inhomogeneous boundary conditions. In showing
(2.9) is a weak formulation of (1.1), it is convenient to replace the vis-
cous term in the latter with 20V - (D(u)); the equivalence of the two
forms follows from the incompressibility constraint (1.2). Note that
the boundary condition on the velocity is enforced weakly through the
use of Lagrange multipliers.

3. Split formulation and its approximation

Let us consider the approximation of the system (2.9)-(2.11) in the
finite element framework. The major difficulties in the approximation
follow from the existence of inhomogeneous boundary data g, the non-
lineality of the system and the appearance of the stress term along the
inhomogeneous boundary. The space H}O () for the velocity appeared
in the consideration of the physical boundary state, while it provides an
additional term for the stress along the part I'y of the boundary. Even
if this raises additional loads toward the computation for the bound-
ary stress, it makes the system stable as well as physically meaningful.
In the Dirichlet boundary value problem, this quantity was appeared
in effort to find an efficient method to implement the inhomogeneous
essential boundary condition. In [2], the Lagrange multiplier technique
was employed to overcome the difficulty of finding stable finite element
approximations satisfying the Dirichlet boundary data. In conjunction
with the finite element methods and the variational principles, this nat-
urally led us to coupling the pressure and the boundary stress, which
are Lagrange multipliers arising from the incompressibility constraint
and the inhomogeneous boundary conditions.

Several different approaches have been studied to incorporate the
boundary stress (or, the boundary flux, specifically). In [4], the elliptic
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problem with Dirichlet condition was decomposed into ones with nat-
ural boundary conditions by incorporating the approximation of the
boundary stress. In this case, the stress was regarded as a parameter
to determine the velocity of the flow. In the consideration of the slip
boundary condition, [16] and [17] coupled the stress term with the pres-
sure to attain the stability of the resulting mixed formulation. Here,
we provide a method that uncouples the computation of the boundary
stress. Fundamental steps include the suitable choice of the boundary
interpolation for the boundary data and the decoupling of the bound-
ary stress from the velocity and pressure.

3.1. Split formulation

Before presenting the computational procedure, some assumptions
for the choice of spaces V* S* and P" are in order. One may choose
any pair of subspaces V* and §* that can be used to the finite ele-
ment approximation for the velocily and pressure in the Navier- Stokes
equations. For practical use, we choose a pair V* C H'(Q) N C(Q)
and S* C L?(Q), and then simply set Vi = Vvhn Hf (), V{ =

h __ ch h _h : A T
VANHL(Q), 8§ = 5" NI3() and P} = VFO'F . Since P C(Ty),
9
we have P?q C HY(T',). In this choice of approximation spaces, the
finite element analogy corresponding to the mixed Lagrangian formu-
lation (2.9)-(2.11) reads:

Seck (u”,p" t") € VI x Sk x P{’;q satisfying

va(u® v*) 4 b(vh ph) — < th VP >p,=<f v >

— C(uh’ uh,’ Vh) \V/Vh e V#“ ’

3.1
< §h,uh’ >r, = < fh,g >r, \7’6}' € P}Ii_,, :
We notice that since VE < HL (©), a(-, ") 1s continuous and
(4] [¢]

Vi XV
. . O L)

coercive. In order to secure the stability and convergence, of the ap-

proximation (3.1) to the solution of the Navier-Stokes equations we

assume discrete LBB condition on elements; there exists a constant C
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which is independent of A such that

h _h
(3.2) inf b,(lv ’qh) >C.
0£g €S} ozvrevy IV I1llg™ o

This condition is needed to keep the balance botween velocity and
pressure, whence to allow the stability of the approximation.

REMARK. The condition (3.2) is somewhat stronger. In practice,
the generic constant C' of (3.2) may be taken to depend on the size
of the mesh. Even in such cases, LBB condition may still imply the
convergence of the chosen elements, provided that the infimum of the
constant C'(h) decays to zero not too fast (see, e.g. [15]).

For general applications, we assume that V* and S* satisfy the
following approximation properties: there exists an integer k and a
constant C' which is independent of h, v and ¢ such that for 1 < m < k,

(33) ot o= d"lo < O gl Vg€ BNR) 0 LE@)
q" ey

and for s = 0,1,

(3.4) inf |lv = vty < Ch™ *||v]lm Vv € H™(Q) N HL (Q).

V’LEV#()
Moreover, we assume the following inverse inequality for P#g C HY(T',):
(3:5) € er, < CH2)€"ler, VE" €PE  —l/2<t<s<1,

where C is independent of h and €. In (3.3)-(3.5), the integer k is
related to the degree of the polynomial approximation.

For the choice of the boundary interpolation, we notice from the
third equation of (3.1) that < s u" — g >1/2,r,= 0 for all sh € P'ﬁq,

h

lLe., u" cannot exactly approximate the boundary data g along I,

by merely taking uh! . This in general spoils the accuracy for the

1Ty

approximation. To circumvent it, we take g" as the L2 (I'y)-projection
of g, ie., gh = P#q (g), where PI’?{} denotes the L?({"y)~projection from
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HY2(I',) onto P?g. Then, the following orthogonal property for the
projection holds;

(3.6) / (Z-P)g Pk (vv)dT =0, vveH: (9).
. _ .

g

Based on this structure, one can approximate the system (3.1) in
the following manner:
[-] Given g € HY/2(T,), evaluate g = ’P{fg (g).
-] Solve for (u”,p") € VI x S» such that
To 0

va(u® v + b(vh p") =< £V >
— ¢(uh u” v vt e vh
b(u",¢") =0 V¢" € SE,
<€ u">p, =< € g >, st ePp .

~] Solve for t" € P? such that
r.‘]

h h . h

< th vt >p,=va(u”, v") + b(vh ph) + c(u” u vh)

(3.8) h
—<f vl > W EVI‘() V.

In this approach, the computation of the boundary stress is attained
in terms of known velocity and pressure. It is interesting that, despite
the stress not being a boundary condition for the problem considered, a
natural postprocessing procedure for the boundary stress nevertheless
ensues.

Note that using this split formulation, the weak primal version (2.9)-
(2.11) can be rewritten in the forin:

[-] Solve for (u,p) € H], x L§(Q) such that

va(u.v) +b(v,p) =<f,v>_; —c(u,u,v) ¥ve H{),
(3.9) blu,q) =0 Vg€ LE(Q),
<€u>p =<€g>r, Vse H'VYT,).
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-] Solve for t € H™1/2(T,) such that

<t.v >, =va(uv) +b(v.p) + c(uu,v)

(3.10) P
~<fov>_, YveH} () -HYQ).

3.2. Approximation g" to g

Since the approximation properties are fulfilled for the familiar reg-
ular finite elements (see, e.g., [4], [6] and [16]). the accuracy of the
scheme mainly depends on how good an approximation g” is to g. For
this purpose, we introduce the Hj. —projection Q" from H}«U(Q) onto
V{?\”, ie. forwe Hp (Q),

(311) (T~ Q"w. v =a((Z - Q"w,v") =0 w" eV}

We need some preliminary results for the approximation to g.

LEMMA 3.1. There exists a constant C > 0 such that
2 2 2 /22
(3.12) IvgvllG.r, < CEVAIVIT+ 672 (v]E),

for all v e Hy () and 0 < 6 < 1.

Proof. This is an immediate consequence of [8] (Theorem 1.5.1.10)
and the continuity of the trace mapping. ]

LEMMA 3.2. Let w be an element of H}“(Q) with ygw = g. Then

(3.13)

s —”l)hr”“W%a~ww%-

Proof. For the proof, one may recourse to the so-called Aubin-
Nitsche trick (see [6]). Let e = w — Q"w. Since Vi, C Hi (©),
e € Hf. (). Let us assume n € H*(Q) NHY, () be the solution of the
following auxiliary problem:

(3.14) a(n,v) = (z,v)y Vve H%«U(Q'r .
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where z € H;Ul () NL3(Q) is given. The regularity of (3.14) yields
[nll2 < Cllzllo. Now let us take v = e in (3.14). Then, using the
symmetry of a(-,-) and (3.14), we have

(z,€)
Izlo
a(n, e)
Izl

h
AN -ne)
z Izllo

leflo = sup

“up

where 7" denotes a Vfl“winterpolant of n. Hence,

p el
2 Tlzllo”

From the approximation assumption (3.4), we have

lello < Clin —9"|| su

In — 2"l < lm— 2"l < Chilnll> < Chljz|jo,
whence
lello = I(Z — Q") wllo < CRI(Z — @")w|| < Ch||(T - Q")w; .

Applying the inequality (3.12) by taking § = h2, it follows that

|

wW(@-aw)|| o(m@- Ol 4 i - otywi)
< CH(T -~ @ wi?. 0

REMARK. In the auxiliary problem (3.14), we assumed the H2-
regularity for the solution . On a convex domain with C%!-boundary,
the elliptic problem always guarantees such an order of regularity by
the classical regularity theory ([8]). For a nonconvex domain, however,
this may not hold. One may get at most H!**-regularity for some
0 < p < 1. Nevertheless, the estimate (3.13) does not change, for
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(3.12) holds for all § € (0,1), i.e., the minor adjusting of § and the
index of h will yield the same conclusion.

The preliminary estimates for the computation gh = ’P{lq(g) can
be obtained by refining the result of Lemma 3.2, using the inverse

inequality (3.5). Our approach is illustrated in the following (non-
commutative) diagram:

HL () c HI(Q) —< Vi Vb

"I’gl i Ya

n
H!/2(T',) C L%(T,) LN P! cP"

Let w be an element of H}U(Q) such that y,w = g. Then, preliminary
result includes estimations of g — 'Pf"gg with respect to (Z — Q")w (see
also [3] and [4]). Once the basis of the discrete space P’llq is known, it
is easy to build the approximation g”. -

LEMMA 3.3. For a given g € Hl/z(Fg), let g" = PI’}gg € P?q. It
holds that

(3.15) g —g"llor, < CRZNT - QM)wl,
(3.16) g — g"ll-1/2,r, < Ch|(T — Q"W
and

(3.17) g — g"llj2r, < CIHI — 2")wlh: .

Proof. Note that / (g—g')-¢"dl =0 v¢" € P{iq by (3.6). Since
r, ’

w € Hf, () is chosen so that vow = g and v, (Q"w) = g" € P{lq, we
have A
lg— 8" e, = | (8- 8" (5= (Q@"w) + 1(Q"w) -~ g")ar

g

= /F (g—8") (g8 — 7, (Q"w))dl

g

< flg - g llox, I1(Z — @)wllor, -
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Hence (3.13) yields

g~ &"llor, < 1e(Z — Q") wlor, < CRY|I(Z — Q")w]|.
so that (3.15) is obtained.

For the proof of (3.16), we necd some preliminary facts: For each
¢ € HY2(T,), let Vg € H} (Q) be a lifting of ¢ for the trace, i.e.,

YoV = ¢ and Hv¢|{1 < Cll@llij2,r,- From the orthogonality of the

projection Q" we obtain
Ivgll = I(Z = @ )vglit + Qv
Hence, it follows that
(3.18) Wz - Qh)V¢||1 < 5|V¢”1 <Cli¢lli2r, -
The inequality (3.16) is the composite result of (3.6), (3.15) and (3.18);

Jr (g—g") - odl

g — gh”~1/2,r = sup g _
’ 0APeHI/2(T,) ||¢||1/2,r_,,
Jr (&~ g")- (6P| ¢)dr
= sup ' :
0£@PeH/2(I,) ll$ll1r2r,
¢ - 7)1}1'!; ||0,rg

S CHg - gh “(’.r_q sup ”¢”
0£PeH/2(Ty 1/2.

h1/2 T — Qh
< Chl/ZH(I _ Qh)wlll SUp — “( ”v¢” )V¢“1
1

<Ch

[(Z - Q")wih
In order to show (3.17), we notice that

g —g"llor, < llg —7(Q"W)llor, = (T — Q")wWlor,
< CRYA|(T - @"yw,
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which follows from the orthogonality of ’P{lg and (3.3). Then, using the
inverse inequality and the continuity of the trace mapping, we have
lg — gh||1/2,r‘,,

< (T = @MWl jar, + 11e(Q"w) — "1l /2,

< CHIZ ~ @")wlih + h™ 2|7 (Q"w) — g"llo.r, ]

< CIIE - @"wli + A~ 2(llg - 79(Q"W)llor, + llg — g"llor,)]

<O - Q"wih + b= 2 (llye(Z - M wlor, + g — &"llor,)]

< CHNT — @")wlh + h™2h (T - QMywly ]

<O -QMwl: . 0

Using a similar technique, the results of Lemma 3.3 can be general-
ized as follows:
Suppose g € H*(T',) for all s € [0,1/2] and gh == ’Pl’lgg. Let vg be a
lifting of g. Then, it follows for 0 < s < 1/2

or, < CRT — Q" vellar1)2
< Cho|iglls -

__h
(3.19) lg —g"]

Moreover, for ¢ € H*(I'y), since

J

(TP )g $dr = /F (Z—Ph)g- (T Ph)gdr

< lltg ~ g"lloll(Z = Pt,)llo
< Ch'lig|lth*l@lls for 0 <s, t<1/2,

9

we obtain

le=g'l-ar, = sw [ (@-Ph)eggdr<Chgl
Gen(Ty),[1@llarg<1 /o
So, this naturally leads us to

(3.20) g —&")|l-sr, < Ch{/HSHng/z for 0 <s<1/2.

Now, we state the main result for the estimation of g” to the Pl’lg~
projection of g.
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THEOREM 3.4. Let g and g" be defined as in Lemma 3.3. Then, as
h — 0%, we have

(3.21) hVY2g - g"or, — 0,
(3.22) h g ~ gh’i_l/z,rg — 0,
and

(3.23) g — gh||1/2,rq — 0.

Proof. Since w is a lifting of g taken arbitrary (3.20) implies that

W lg =gt lor, < inf T - @ wil
T vig W —

Since C=(Q) N H}. (1) is dense in H}. (©2), one can deduce (3.21) from
the approximation property of VI’ZH. (3.22) and (3.23) can be shown in
the similar manner. a

If sufficient regularity is allowed for the domain and the data, the
estimates of Lemma 3.3 for the approximation can be sharpened.

THEOREM 3.5. Suppose g € H™ Y2(T',) for | < m < k and w €
H™(Q) N Hy, (Q) be a lifting of g. Then, under the same condition
with Lemma 3.3., we have

(3.24) lg —&"llor, < CH™ Y2 |lw|m

(3.25) g — gh“—l/il,I'g < Ch™|wlim

(3.26) g — &"lly2r, < CR™ Y |Wiim -
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Proof. Since Q"w ¢ V’llo, from the approximation property (3.4),
(3.10) yields

g — g"llor, < ChY2||(Z — OMyw|,
< ChV2R YWl = CP V2w,

so that (3.24) holds. Similarly. for (3.25) and (3.26). O

REMARK. The regularity problem we encounter can be simply stated
as follows; For g € H™ V2(I',), can we find w € H™(Q) N Hp (Q)
such that a (w,v) =0 for all v € Hf, (Q) with w =g on I'y? This is
always true on the smooth domain by the Lax-Milgram Lemma and
the regularity results for elliptic problems (see [6]). However, in a poly-
hedral domain, sufficient regularity may not be available, m will be at
best 2 (see [8]). That explains why we have taken the L2-projection
for the approximation of the boundary data instead of boundary in-
terpolants. Methods using conventional boundarv interpolants do not
ensure the convergence nor optimal L2-error estimates without sup-
plying a sufficient regularity assumption for the solution.

In conjunction with the existence of continuous lifting of H/2(T',) in
H'() as in Lemma 2.1, it is useful to mention its discrete counterpart
for later use.

LEMMA 3.6. (Lifting of P?gv Given Eh € P’;q, there exists v* ¢
h h !
V{lg such that v,(v") = €" and ||v*||, < C|€ l,2.r,
Proof. For our purpose, we only show the basic idea in 2D-case. Let

us consider
—Av =0in §,

Oon Iy
Vo= N
£ onT,y,.

»

and

Since V& C Hf () N C(Q), we have £ e HY2H(T) for 0 <
6 < % Sobolev embedding and elliptic regularity vield that v €
H'*5(Q) ¢ €(Q) and ||v[lis < CUE 1 j246r,- Now. take v" to be a
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Vfi“—interpolam of v so that v,v"* = fh. By Bramble-Hilbert Lemma,
we have [|v ~ v"[lo < Ch1*|lvl1;5 and |v — vA] < CH8{[v]11s. Ap-
plying inverse inequality, one can conclude that

V'l < Jlv = vl + vl < CCIviiags + v

< C(°NE | j2rs + 1€ 1 j2.r,) < CIE I yer, m

3.3. Intermediate operator for the boundary stress

For error estimates of the approximation (3.8) for the stress along
the inhomogeneous boundary, some comments are in order for the
choice of an approximation space Ph for the stress. Phq has been cho-
sen to accommodate both the trace of the velocity and the boundary
stress. For strict computation, one may consider taking Phg indepen-

dently of the velocity space; two different spaces Ph1 and v, (V 2) with
different meshes may be taken to approximate the stress and the trace
of the velocity. However, in order to sustain the stability of the scheme,
this approach necessitates an additional requirement for meshes such
that hy > Khy, where K is a positive constant dependent on the do-
main (see [2], [4] and Remark of this section). This levies an additional
difficulty of determining K. Our approach is simply 7g(VfiU) = P}Ilg
and P{';q, as an approximation space of the stress, is understood to
be embedded in H™Y2(T',). [17] studied similar structure relating the
interior mesh to the boundary for the Lagrange multiplier, which is rep-
resented by the normal derivative terms of state variables. However,
his approach consists of taking the approximation space in L?(I").

Let us begin our discussion by introducing an intermediate opera-
tor to interpret P’;q in H2(I'y;. We consider the operator 'Rf’;q

H™VX(T,) - Pi € H V2(T,) defined by
(3.27) <REENV! >p =< €V >p, WWRE VA

This operator is an extension of P{l in the sense that R}' ( =
H: (T,

’PI’J for all s > 1/2. For our purpose, we call attention to partlcular
properties of R{lq.



Mixed Lagrangian formulation of N-& eqs 107

LEMMA 3.7. The operator R} defined in (3.27) satisfies the fol-

lowing properties:

(1) R’ﬁq is a bounded operator in HI?:/Q.

(ii) For & € H-Y2(T,), we have

(3.28) I(Z - R{ig)fuwl/‘s,rg —0 ash—0".

(iii) We suppose that € € H*(I'y) for —1/2 < s < 1/2. Then we have

(3.29) I(Z = RE €l —1/2r, < CHT2E)sr, -

Proof. (i); Let ¢ € HY/2(T',) and Ve be a lifting of ¢ in H}, () so
that ||V¢||1 < Cl|@ll1/2,r, Using (3.17) and (3.18), we have

IPF 8lls2x, <N~ P )@l2r, + I8l2r,
<Cl(T - Qh)v¢||1 + 1@l 2.1,
< Cligllyzr, -

Since ’R?gé‘ € P?y, we deduce from (3.6) and (3.27) that

< RPE ¢ >r, =< REE (T —PF)é+Pr, ¢ >r,
=< R?,,57P#g¢ >r,
=< §,7",”<g¢ >r,
< ”£”—l/2,I',,||,PI”Z_,,¢H1/2‘Fg
< Cl€ll-1/2.0, 18l /2.1, -

Therefore, it follows that

h
H,R'gqﬂ'-l/ZFg = sup <Rr, & ¢>r,
0£PEHY/2(Ly), |Pli1j2,r, <1

S CH&”—l/’},Fg :
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so that ”R’IZ_,,HE(H‘I/?(F!,)) < C.
(ii); We use the fact that C*(T,) is dense in H~ L/2(Fg) and R'Iig (C==

(Tg)) = Pf (C=(Ty)). For & € H™V/2(T,), take & € C*(T',). Since
Rflq is bounded in H™1/2(T'), using (3.20) one can carry out

I(Z = REDEN 1 jor,
=T -RE)(E—E)+E)l| 1ar,
<€~ Ell-1/ar, + IRE, (€ = E)ll-1/or, + 1T — PE )l 1/2r,

<CUIE~El-1y2r, +hIEN/2r,).

Therefore, (3.28) follows from the denseness of C*'(T',) in H-Y2(T,).
(iii); Employing interpolation arguments for the Sobolev space (see
[7]), (3.29) follows from (3.16) and (3.20). O

REMARK. When P?; and A,'g(V;';f]) are taken to approximate the
stress and the trace of the velocity, respectively, and the meshes are
taken to satisfy the relation hy > Khs for some sufficiently large con-
stant K, we can show that there exists a positive constant C such
that

_ T
(3.30) 18" leom-vey 2 C,
where B V?ﬁ — Shz x P?i 1s the restriction of the operator (2.7),
le., ’
< B'wh, (qh,fh) >= b(wh,qh) - < Eh',wh’ >r,
It can be achieved by simply modifying the auxiliary problem in [10]
as follows: Given (&' ¢") € P’llf’ x §2 find (¢, 1) x H} () x L(Q)

satisfying
—-A¢+Vr=0 in ,

Vg=0 in 0,
—rn+n- (Vé+(Vg)') = —£" on T,

Note that (3.30) is tantamount to the discrete augmented LBB condi-
tion for the discrete Stokes problem

a(uh,vh) + < Bh’vh,(ph,th) >=<f, vl > wwhe V?i .

<BM" (g" ") >= — <’ g >r, V(" n") € Sp2 x PP
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In [17], the Stokes problem with no-slip boundary conditions was con-
sidered in a similar manner. [17] used the same mesh h; = h, and
enhanced the approximation for the velocity by adding bubble func-
tions along the boundary to achieve the augmented LBB condition.

4. Error estimates

In this section, we derive error estimates for the approximation of
(u*, p" t") to (u,p,t), where (u*, p" t") and (u,p,t) are solutions of
the systems (3.7)-(3.10).

To study the approximation, we first invoke the corresponding non-
linear function formulation as in 5] and (8]. The study of the approx-
imation may be reduced to the analysis of the corresponding approxi-
mation to the solution of the Stokes formulation whose boundary stress
is decoupled from the velocity and pressure.

4.1. Brezzi-Rappaz-Raviart framework
We take X = H}, (Q) x L3, Y = HpM () x HY?(T,) and Z =
L32(Q) x {0}. We define the solution operator T € L(Y;X) for the

Stokes problem with inhomogeneous boundary conditions by T(f, g) =
(u,p) if and only if

a(i,v) +b(v,p) =< f,v>_; VveHLQ),

b(B,q) =0 Ve L),

and
<s, u >_1/2YF9:< S,g :}—1/2,1"9 Vs € H_I/Z(Fg) .

Analogously, for the solution operator of the approximate Stokes prob-
lem with L*-projection of the boundary data, we define Th(f,g) =
(@",p") e X' = Vi x Sk if and only if

g" =Pk (g) vgeHYA(T,),

a(ﬁh’,vh) + b(vh',f)h) =< fvi> whe Vg ,

b(E"q") =0 Vo € S5,
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and
< Sh’ﬁh. Sp, =< Sh\gh >r, vsh P?"q-

Since X" is a dense subspace of X, T" is a bounded lineal operator
from Y to X. To cover the nonlinear part, we take A to be a compact
subset of Rt and define the nonlinear operator G from A x X to Y

by G(A, (u,p)) = (n,K), for A = E € A if and only if
v

<nv>oa=Acuu,v) - A<fv>_, ¥weH(Q),
< S, K >_1/2’]“g: — <8, g >k1/27]ﬂg VSEH—"I/Z(I‘Q).
Then, (3.7) and (3.9) can be written as
(u,Ap) + TG(A, (u, Ap)) =
and
(", 2p") + T"G(X, (u", 2p")) = 0,
respectively.

It is easy to check that the first and second Fréchet derivatives D¢G
and D¢¢G belong to L£(X;Y), where ¢ = (u,p) € X. Moreover,
since L3/2(0) is continuously and compactly embedded in Hp (Q)
is compactly embedded in Y. Hence due to Brezzi- Rappaz Ra\ iart
framework ([5]), the analysis of the convergence tirns into that of the
approximation of T* to T
4.2. Error estimates for velocity—pressure

Let y = (f g) € Y be given. The approximarion depends on the

estimate for ||(T" — T)y||x. For this purpose, we introduce the discrete
operator T of T defined by T"y = (Gi", p") € X" if and only if

/\h Ph (A) v/g\ e H(1)/2(Iwg>
a(@", v") + (v, p") =< £ vE > Wl e A%

b ") =0 vt e sh.

and
< st ot >r,=< st gh >r, vsh ¢ P?q :

We now state estimates for ||(T" — T)y||x.
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o~

LEMMA 4.1. Lety = (f,g) € Y. Let Ty = (4,p). Then, it holds
that

(4.1) IT" = Tyllx <€ inf (@) - (a",5")x,
(l!" ’ph)exh
where X" = {(a" p") € Vi x Sh | ypu” = ghy.
Proof. This follows directly from the application of the result due
to [11]. O

One can combine (4.1) with the approximation result for g" to ob-
tain the following result.

LEMMA 4.2. Under the same conditions with Lemma 4.1, we have

4.2 Th T <C inf a,p) — (0" rM)|Ix .
(4.2) II( ¥ix < (m,iil)exh I(@,p) - (n".r")|x

Furthermore, if we assume that (u,p) € XN (H™(Q) x H™~1(Q)) for

1 < m < k, then there exists a positive constant C, independent of h,
such that

(4.3) HT" = T)ylix < CH™  [|[i]lm + [Bllm_r] -

Proof. We first show that

I(T"~T)yllx

<C inf u,p) — (g, rh + g -g" .
<Cl,inf NEB) =~ )+ 8 -8,

(4.4)

We observe that

WT-Qill = inf fi-n'll< inf [a—n].
ntevy *

Ty Iy
Hence, from Korn’s inequality we have

(45) (T - @Mul; < I - QM| < Cn,.iflé,. a—n":.

=¥y
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Let vt € VI be a lifting of g - 7, (QF) € P}‘ (see Lemma 3.6).
Take 7" = v* + Q"G. Applying the continuity of the trace and (4.5),
we deduce that
6= 9" < 8 - Q"G + v
<o - QMilly + ClIg" = v(Q"W) 12,
< Jla - M|y + ¢ g -8 /||1/2,rg + 174 (Z - Qh)ﬁHl/Q,rg)
< C(lla- Q"aly + |Ig — &8"lhy/2r,)
< C(lu - Q"ujl + g - &"lh/2r,)
<C[ inf JG—9"l +18 - &"lli2r.]-

neve,

Hence, (4.4) is obtained from (4.2). We further note from (3.16) and
(4.5) that

(46)  1&=&"ler, < CIT- QB <O inf 3=l

%S
Therefore, combined with (4.4), the estimate (4.2) is a composite result
of (4.1) and (4.6).

Next, we turn to showing (4.3). From the regularity result for the
Stokes operator (cf. [7]), we have; if (W, p) € H™(Q) x (H™"1(Q) N
L) for 1 <m <k, ge Hgl_l/z( I'y). So, it follows from (4.7) that
lg — @hHl/glq < Ch™ !ull,. Then, applying the approximation
properties (3.3)-(3.5) to (4.4), (4.3) is obtained. 0O

As a supplementary result to Lemma 4.2, one can obtain the main
estimates for ||(u”,p") — (u,p)|x.

THEOREM 4.3. Assume that A be a compact subset of R*. Let
X =Hj () x L3(Q).
1
Suppose {(A, (u(A), Ap(A)) | A = = € A} be a branch of regular so-
v

lutions of (3.7) Then, for h small enough, there exists a unique regular
branch {(A, (u"(\), )\p"( ))) | A € A} of solutions of (3.9) in the neigh-
borhood of (u{A),p(\)) in X and a positive constant C, independent
of h and A € A, such that

(4.7) (™ (X). 2" (0) = (a(A), p(W))llx == 0
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as h — 0%, uniformly in A = = € A.

v

In addition, if we assume that {(u(X),p(A)) | A € A} belongs to

XNH™(Q) x H™1(Q)) for 1 < m < k, there exists positive constants
C which is independent of A € A and h such that

1™ (A), " ()= (u(A), POVl

(4.8) -1
< CRP (M lm + Pl —1]

for all A € A.

4.3. Error estimates for the boundary stress
We are now concerned with the error estimates for the stress t in

(3.8) and (3.10). We recall that even though g € H§(T',) for s > 3 if Q
is Lipschitz continuous, the solution (u,p) of the system (3.9) belongs
to X N (H327%(Q) x HY2-5(Q)) for some small § > 0 from the loss

of the convexity and regularity of the domain (cf. [10]). We provide
general perspective for the operator R'Ilq.

LEMMA 4.4. Let t € H1/2(T',) be a solution of the scheme (3.9) -
—(3.10). The following properties hold for R?Q:

(i) e - R?‘gtll—l/z,ry —0 ash—0t.
(ii) If @ is Lipschitz continuous and g € H3/2(Pg)’

(4.9) It = RE tll-1j2r, < CRY27°[|[u]l3ja_s + [Ipll1/2—s)

for some small § > 0.

Furthermore, provided that the solution (u,p) of the system (3.9)
belongs to X N (H™(Q) x H™™1(Q)) for 1 < m < k, we have more
general estimates:

(iii) If 1 < m < 2, we have

(4.10) It = RE -2, < CR™ [l + lpllm-1].

(iv) If m = 2 and () is a convex polyhedral domain, it holds that

(4.11) it — Rlllgtuwl/ll“g < Ch* [ lafl2 + |Ipll1 ]
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forall 0 < 6 < %
(v) If2 <m <k and t € v,(H}. () N H™"1(Q)), we obtain

(4.12) It =Rt tl 120, < CR™! inf [[velmes.,
Vi

where V = {v¢ € (Hp () NH™) | y,ve = t}.

Proof. (i) follows from Lemma 3.6.
(ii); Since (u,p) € XN(HY2=5x H/2=0) t ¢ H~V/2(T))nH%(T,).
Hence, from (3.28), we obtain

It — RE tl-1/2r, < CRY270[|jt] s, ]
< ChY [ Nlullsja—s + lpllj2-s]-
Similar argument also results in (iii).

(iv); Suppose m = 2 and the domain is convex polyhedral. Since
t=—pn+vn-(Vu+ (Vu)T), t is not continuous along the boundary

1 .
and t € HY/2-%(T,) for 0 < 6 < 3~ So, from (3.28) it follows that

[tll—1/2,0, < CR'™®||tlli_sr,
< Ch[lullz + liplh -

(v); Since t € H*(T'y) for s > =, ’R"‘g = 73{10 so that

[N

It — R’Il'gt”—l/zrg < CR™ Hvellm-1,
where vy is a lifting of t. Since this holds for all v, (4.12) follows. O
The main estimates for ||t — thH_l/z’l"g are found by Theorem 4.3

and Lemma 4.4.

THEOREM 4.5. Assume that A be a compact subset of R.
1
Suppose {(A, ¢ = (u(A),Ap(A))) | A = » € A} be a regular branch of
solutions of (3.9) and let (u"(),p" (X)) € X be the solution of (3.7) in
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the neighborhood of ¢ in X. Let t(\) € H™'/2(T'y) and t*(\) € P} C

H~Y2(T",) be corresponding solutions of the system (3.10) and (3.8),
respectively. Then, we have the following error estimates on the same
branch :

(1) JIith () - t(Ml-1/2,r, — 0, uniformly as k — 0%,

(ii) If Q is Lipschitz continuous and g € Hg/Q(.?[’g), we have

16" = ¢l -1 /e, < CPY27 (1 + fluly) (ullsja—s + 12l /2—s)

for some small 6 > Q.

Moreover, let (u(A),p(A\)) € XNH™(Q)x H™ Q) forl <m < k
and let (u"(\), p" (X)) be a corresponding approximate solution on the
same branch. Then, the error estimates can be sharpened as followings:

(iii) If 1 < m < 2, we have

LX) = RE t M- 1/2r, < CR™ ML+ lull) ([ullm + [[pllm-1) -
(iv) If m = 2 and () is a convex polyhedral domain, it holds that
180 = RE, 6 W) 120, < CREQ+ ulln (lull2 + 1p]l)
forall 0 < 6 < %
(v) If2 < m < k and t(\) € v (Hp () N H™ 1(Q)), we obtain
[E(A) — Rizgt</\)|l—l/2,l“g <SCh" T 1+ lully vitr.lgfv Vellm-1,

where V = {v¢ € Hp (Q) N H™) | vyvy = t}. Here, C is taken
independent of h and X € A.

Proof. From the triangle inequality, we have

(4.13) It —t*] 1o, < It - RE ¢t

|-1/2,0, +IREt =t 12, -

Since the estimates for ||t — R’ﬁgtH_l/vag are given in Lemma 4.4, it
is sufficient to find estimates for i’R?%th,.1/2j[‘g. By the definition of
’R? t, we have
9
h h h
< Rrgt,v’ >r‘g:< t,v >r,

4.14)
(.14, = va(u, v") +b(v" p) + c(u,u, vh) = < £,v" >_,
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for all v € V?y. Since VI’EO C Hp, () and (u,p) € X is the solution
of the system (3.9), (4.10) is justified in the same sense with (3.10).
By subtracting (3.8) from (4.14), we obtain

h h _h
<Rr\gt_t , vV >]"g

(415)  =wa(u—u" v") +b(v" p—p") + clu — u" u - u, vh)

h

+c(u—u" u,v?) + c(u,u——uh,vh).

Let fh = ’R?qt = Pl'ig and v*, be a lifting of £h such that

§
h . —
Ilvghﬂl <Cli€ M /2r, < CRV2IRE &= t"or, |

h

fh

which is followed by the inverse incquality. Hence, by setting v = v

in (4.15), we have that

h hy2
IRr,t —t"[5r,
h

< @lla—u"y +llp = p"llo + u = w*|1} + 2fhuy fu - uhlll)HVEn i

—1/2 h _h h R
S Ch / E(uspau » P )”Rl‘gt -t IlO,Fg ’
where
E(u,p,u®,p") = vllu—u®li+|p--p"lo+lu—u" |2 +2]ull: fu—u”|, .
Thus, we obtain that

(4.16) ||72}Ilgt - thHO’pg < Ch7Y2E(u, p,u M.

Let ¢ € H1/2(Fg) and Pp'g (¢.) — ¢n' Let VZS;, be a lifting of ¢h. in V?O
such that
”V:;hHI < Cil?’#gd)”l/“g < Cligl,zr, -
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We also note that [[(Z — ,P{wlg)¢‘|(),r'g < Ch,1/2||¢||1/2T9. Then, using
(4.16), we have that

<REt—t" ¢ >r,

— ph h h h

=< Rp,t—t".(Z-Pr )¢+ Pr ¢>r,

=< ’Rl}igt —t" (T~ P{?g)q& >p, +ra(u — u” v;;,) b(v ;h,p —pM)
+c(u—u" u-— uh’,v;’bh} +clu—1u" ,u,vhh) c(u,u —u” V;b )

< H,R’ii,,t - th”OH(I - P#q)¢“0 + CE<u7pw u vp‘)||v¢’l

< Ch™V?E(u,p,u”,p")Ch 2|l o, + CE(u, p,u". p") |18l 2.1,
< CE(u,p, uhaPh)H¢||1/2,rg .

Thus,

H’Riﬁgt - th’|1—1/2,r9 = sup < R?gt —t" ¢ >r,
GeH/2(I') | Pll1 /2,1, <1

S CE(UJ)- uhvph) .

Hence, combined (4.13) with Lemma 4.4, (i) is followed. The other
estimates are also obtained in a similar manner. O
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