1 |
J. Aramaki, Existence and regularity of a weak solution to a class of systems in a multi-connected domain, J. Partial Diff. Eqs., 32(1) (2019), 1-19.
|
2 |
M. Avci, Existence and multiplicity of solutions for Dirichlet problems involving the p(x)-Laplace operator, Electron. J. Diff.l Eqs., 14 (2013), 1-9.
|
3 |
A. Ayoujil, Existence results for Steklov problem involving the p(x)-Laplacian, Complex Var. and Elliptic Equ., 63 (2017), 1675-1686.
DOI
|
4 |
F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer, Yew York, Heidelberg, Dordrecht, London (2013).
|
5 |
S.G. Deng, Existence of the p(x)-Laplacian Steklov problem, J. Math. Anal. Appl., 339 (2008), 925-937.
DOI
|
6 |
L. Diening, Theoretical and numerical results for electrorheological fluids, ph. D. thesis, University of Frieburg, Germany 2002.
|
7 |
X.L. Fan, Solutions for p(x)-Dirichlet problems with singular coefficients, J. Math. Anal. Appl., 312 (2005), 749-760.
|
8 |
X.L. Fan and Q.H Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852.
DOI
|
9 |
X.L. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl., 263 (2001), 424-446.
DOI
|
10 |
X.L. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302 (2015), 306-317.
DOI
|
11 |
T.C. Halsey, Electrorheological fluids, Science, 258 (1992), 761-766.
DOI
|
12 |
O. Kovacik and J. Rakosnic, On spaces Lp(x)(Ω) and Wk,p(x)(Ω). Czechoslovak Math. J., 41(116) (1991), 592-618.
DOI
|
13 |
M. Mihailescu and V. Radulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. Royal Soc. A., 462 (2006), 2625-2641.
DOI
|
14 |
Z. Wei and Z. Chen, Existence results for the p(x)-Laplacian with nonlinear boundary condition, Appl. Math., (2012), Article ID 727398.
|
15 |
B. Ricceri, A further three critical points theorem, Nonlinear Anal., 71 (2009), 4151-4157.
DOI
|
16 |
Z. Yucedag, Existence results for Steklov problem with nonlinear boundary condition, Middle East J. of Sci., 5(2), (2019), 146-154.
DOI
|
17 |
L. Diening, P. Harjulehto, P. Hasto and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lec. note in Math. Springer, 2011.
|
18 |
J. Aramaki, Existence of weak solution for a class of abstract coupling system associated with stationary electromagnetic system, Taiwanese J. Math., 22(3) (2018), 741-765.
DOI
|
19 |
V.V. Zhikov, Averaging of functionals of the calculus of variation and elasticity theory, Math. USSR, Izv., 29 (1987), 33-66.
DOI
|
20 |
M. Ruzicka, Electrotheological fluids: Modeling and Mathematical Theory, Lec. note in Math., Vol. 1784, Berlin, Springer-Verlag, 2000.
|
21 |
Z. Yucedag, Solutions of nonlinear problems involving p(x)-Laplacian operator, Adv. Nonlinear Anal., 4(4) (2015), 1-9.
DOI
|
22 |
J. Aramaki, Existence of weak solutions to stationary and evolutionary Maxwell-Stokes type problems and the asymptotic behavior of the solution, Adv. Math. Sci. Appl., 28(1) (2019), 29-57.
|
23 |
E. Zeidler, Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators, Springer-Verlag, Now York, Berlin, Heidelberg, London, Paris, Tokyo, 1986.
|
24 |
D. Zhao, W.J. Qing and X.L. Fan, On generalized Orlicz space Lp(x)(Ω), J. Gansu Sci., 9(2) (1996), 1-7.
|
25 |
C. Ji, Remarks on the existence of three solutions for the p(x)-Laplacian equations, Nonlinear Anal., 74 (2011), 2908-2915.
DOI
|
26 |
M. Allaoui, A.R. El Amorousse and A. Ourraoui, Existence and multiplicity of solutions for a Steklov problem involving the p(x)-Laplace operator, Electron. J. Diff. Eqs., 132 (2012), 1-12.
|
27 |
J. Aramaki, Existence of weak solutions for a nonlinear problem involving p(x)-Laplacian operator with mixed boundary problem, submitted.
|