Browse > Article
http://dx.doi.org/10.22771/nfaa.2021.26.03.06

EXISTENCE OF THREE WEAK SOLUTIONS FOR A CLASS OF NONLINEAR OPERATORS INVOLVING p(x)-LAPLACIAN WITH MIXED BOUNDARY CONDITIONS  

Aramaki, Junichi (Division of Science, Faculty of Science and Engineering Tokyo Denki University)
Publication Information
Nonlinear Functional Analysis and Applications / v.26, no.3, 2021 , pp. 531-551 More about this Journal
Abstract
In this paper, we consider a mixed boundary value problem to a class of nonlinear operators containing p(x)-Laplacian. More precisely, we consider the problem with the Dirichlet condition on a part of the boundary and the Steklov boundary condition on an another part of the boundary. We show the existence of at least three weak solutions under some hypotheses on given functions and the values of parameters.
Keywords
p(x)-Laplacian type equation; variational method; mixed boundary value problem;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Aramaki, Existence and regularity of a weak solution to a class of systems in a multi-connected domain, J. Partial Diff. Eqs., 32(1) (2019), 1-19.
2 M. Avci, Existence and multiplicity of solutions for Dirichlet problems involving the p(x)-Laplace operator, Electron. J. Diff.l Eqs., 14 (2013), 1-9.
3 A. Ayoujil, Existence results for Steklov problem involving the p(x)-Laplacian, Complex Var. and Elliptic Equ., 63 (2017), 1675-1686.   DOI
4 F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer, Yew York, Heidelberg, Dordrecht, London (2013).
5 S.G. Deng, Existence of the p(x)-Laplacian Steklov problem, J. Math. Anal. Appl., 339 (2008), 925-937.   DOI
6 L. Diening, Theoretical and numerical results for electrorheological fluids, ph. D. thesis, University of Frieburg, Germany 2002.
7 X.L. Fan, Solutions for p(x)-Dirichlet problems with singular coefficients, J. Math. Anal. Appl., 312 (2005), 749-760.
8 X.L. Fan and Q.H Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852.   DOI
9 X.L. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl., 263 (2001), 424-446.   DOI
10 X.L. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302 (2015), 306-317.   DOI
11 T.C. Halsey, Electrorheological fluids, Science, 258 (1992), 761-766.   DOI
12 O. Kovacik and J. Rakosnic, On spaces Lp(x)(Ω) and Wk,p(x)(Ω). Czechoslovak Math. J., 41(116) (1991), 592-618.   DOI
13 M. Mihailescu and V. Radulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. Royal Soc. A., 462 (2006), 2625-2641.   DOI
14 Z. Wei and Z. Chen, Existence results for the p(x)-Laplacian with nonlinear boundary condition, Appl. Math., (2012), Article ID 727398.
15 B. Ricceri, A further three critical points theorem, Nonlinear Anal., 71 (2009), 4151-4157.   DOI
16 Z. Yucedag, Existence results for Steklov problem with nonlinear boundary condition, Middle East J. of Sci., 5(2), (2019), 146-154.   DOI
17 L. Diening, P. Harjulehto, P. Hasto and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lec. note in Math. Springer, 2011.
18 J. Aramaki, Existence of weak solution for a class of abstract coupling system associated with stationary electromagnetic system, Taiwanese J. Math., 22(3) (2018), 741-765.   DOI
19 V.V. Zhikov, Averaging of functionals of the calculus of variation and elasticity theory, Math. USSR, Izv., 29 (1987), 33-66.   DOI
20 M. Ruzicka, Electrotheological fluids: Modeling and Mathematical Theory, Lec. note in Math., Vol. 1784, Berlin, Springer-Verlag, 2000.
21 Z. Yucedag, Solutions of nonlinear problems involving p(x)-Laplacian operator, Adv. Nonlinear Anal., 4(4) (2015), 1-9.   DOI
22 J. Aramaki, Existence of weak solutions to stationary and evolutionary Maxwell-Stokes type problems and the asymptotic behavior of the solution, Adv. Math. Sci. Appl., 28(1) (2019), 29-57.
23 E. Zeidler, Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators, Springer-Verlag, Now York, Berlin, Heidelberg, London, Paris, Tokyo, 1986.
24 D. Zhao, W.J. Qing and X.L. Fan, On generalized Orlicz space Lp(x)(Ω), J. Gansu Sci., 9(2) (1996), 1-7.
25 C. Ji, Remarks on the existence of three solutions for the p(x)-Laplacian equations, Nonlinear Anal., 74 (2011), 2908-2915.   DOI
26 M. Allaoui, A.R. El Amorousse and A. Ourraoui, Existence and multiplicity of solutions for a Steklov problem involving the p(x)-Laplace operator, Electron. J. Diff. Eqs., 132 (2012), 1-12.
27 J. Aramaki, Existence of weak solutions for a nonlinear problem involving p(x)-Laplacian operator with mixed boundary problem, submitted.