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EXISTENCE OF THREE SOLUTIONS FOR A MIXED

BOUNDARY VALUE PROBLEM WITH THE

STURM-LIOUVILLE EQUATION

Diego Averna, Nicoló Giovannelli, and Elisabetta Tornatore

Abstract. The aim of this paper is to establish the existence of three
solutions for a Sturm-Liouville mixed boundary value problem. The ap-
proach is based on multiple critical points theorems.

1. Introduction

The aim of this paper is to establish, under a suitable set of assumptions, the
existence of at least three solutions for the following Sturm-Liouville problem
with mixed boundary conditions

(RSλ)

{

−(pu′)′ + qu = λf(t, u) in I = ]a, b[
u(a) = u′(b) = 0,

where λ is a positive parameter and p, q, f are regular functions. To be precise,
if f : [a, b] × R → R is a L2-Carathéodory function and p, q ∈ L∞([a, b]) such
that

p0 := ess inf
t∈[a,b]

p(t) > 0, q0 := ess inf
t∈[a,b]

q(t) ≥ 0,

then we prove the existence of three weak solutions for problem (RSλ) (see
Theorems 3.1 and 3.2). Clearly, when f : [a, b] × R → R is a continuous
function, p ∈ C1([a, b]) and q ∈ C0([a, b]), the solutions of (RSλ) are actually
classical (see for instance Corollaries 3.1 and 3.2).

The problem (RSλ) with p = q = 1 has been studied in [5] (see also [1])
but it is worth noticing that our results assure a more precise conclusion. In
fact, in [5] precise values of parameters λ were not established, and in [1] an
asymptotic condition at infinity was assumed (see Remark 4.2).

In our main results a precise interval of real parameters λ for which the
problem (RSλ) admits at least three solutions is established and, in addition,
in Theorem 3.2 no asymptotic condition at infinity is assumed. Further, since p
and q are variable functions, our results can be applied when the equation is in
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a complete form (see Section 4). Here, as an example, we present the following
result which is a particular case of Theorem 4.3 (see Remark 4.1).

Theorem 1.1. Let g : R → R be a non-negative continuous and non-zero

function such that

lim
x→0+

g(x)

x
= lim

x→+∞
g(x)

x
= 0.

Then, the problem

(P )

{

−u′′ + u′ + u = λg(u) in I = ]0, 1[
u(0) = u′(1) = 0

for each λ > λ̄, where λ̄ = 4e
3(

√
e−1)

inf{ d2
∫

d

0
g(ξ)dξ

: d > 0,
∫ d

0
g(ξ)dξ > 0}, admits

at least two non-zero classical solutions.

Our main tools are three critical points theorems that here recall in a conve-
nient form. Theorem 1.2 has been obtained in [3], it is a more precise version
of Theorem 3.2 of [2] and the coercivity of the functional Φ − λΨ is required,
Theorem 1.3 has been established in [2] and a suitable sign hypothesis is as-
sumed.

Theorem 1.2 ([3, Theorem 3.6]). Let X be a reflexive real Banach space,

Φ : X → R be a continuously Gâteaux differentiable, coercive and sequentially

weakly lower semicontinuous functional whose Gâteaux derivative admits a con-

tinuous inverse on X∗, Ψ : X → R be a continuously Gâteaux differentiable

functional whose Gâteaux derivative is compact. Assume that

Φ(0) = Ψ(0) = 0,

and that there exist r ∈ R and ū ∈ X, with 0 < r < Φ(ū), such that

(a1)
supΦ(u)≤r Ψ(u)

r
<

Ψ(ū)
Φ(ū) ;

(a2) for each λ ∈ Λr := ]Φ(ū)
Ψ(ū) ,

r
supΦ(u)≤r Ψ(u) [ the functional Φ− λΨ is coer-

cive.

Then, for each λ ∈ Λr, the functional Φ−λΨ has at least three distinct critical

points in X.

Theorem 1.3 ([2, Corollary 3.1]). Let X be a reflexive real Banach space,

Φ : X → R be a continuously Gâteaux differentiable, coercive and sequentially

weakly lower semicontinuous functional whose Gâteaux derivative admits a con-

tinuous inverse on X∗, Ψ : X → R be a continuously Gâteaux differentiable

functional whose Gâteaux derivative is compact, such that

Φ(0) = Ψ(0) = 0.

Assume that there exist two constants r1 and r2 and a function ū ∈ X with

2r1 < Φ(ū) < r2
2 , such that

(b1)
supΦ(u)≤r1

Ψ(u)

r1
< 2

3
Ψ(ū)
Φ(ū) ;
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(b2)
supΦ(u)≤r2

Ψ(u)

r2
< 1

3
Ψ(ū)
Φ(ū) ;

(b3) for each λ ∈ Λr1,r2 := ] 32
Φ(ū)
Ψ(ū) ,min{ r1

supΦ(u)≤r1
Ψ(u) ,

r2
2

supΦ(u)≤r2
Ψ(u)}[ and

for every u1, u2 ∈ X, which are local minima for the functional Φ−λΨ,

and such that Ψ(u1) ≥ 0 and Ψ(u2) ≥ 0 one has infs∈[0,1]Ψ(su1 +(1−
s)u2) ≥ 0.

Then, for each λ ∈ Λr1,r2 the functional Φ − λΨ admits at least three critical

points which lie in Φ−1(]−∞, r2[).

2. Mixed boundary value problem

Consider problem (RSλ), assume that p, q ∈ L∞([a, b]) such that

p0 := ess inf
t∈[a,b]

p(t) > 0, q0 := ess inf
t∈[a,b]

q(t) ≥ 0.

We recall that a function f : [a, b] × R → R is said a L1-Carathéodory
function if

- t → f(t, x) is measurable for every x ∈ R;
- x → f(t, x) is continuous for almost every t ∈ [a, b];
- for every ρ > 0 one has sup|x|≤ρ |f(t, x)| ∈ L1([a, b]) for almost every

t ∈ [a, b].

Put

F (t, x) :=

∫ x

0

f(t, ξ)dξ

for all (t, x) ∈ [a, b]× R.
Denote by

X := {u ∈ W 1,2([a, b]) : u(a) = 0}

the space endowed with the following norm

||u||X :=

(

∫ b

a

u2(t)dt +

∫ b

a

(u′(t))2dt

)
1
2

.

For every u, v ∈ X , we define

(1) (u, v) :=

∫ b

a

p(t)u′(t)v′(t)dt +

∫ b

a

q(t)u(t)v(t)dt.

We observe that (1) defines an inner product on X whose corresponding norm
is

||u|| :=

(

∫ b

a

p(t)(u′(t))2dt+

∫ b

a

q(t)(u(t))2dt

)
1
2

.

A simple computation shows that the norm || · || is equivalent to the usual one.

A function u ∈ X is said a weak solution of problem (RSλ) if
∫ b

a

p(t)u′(t)v′(t)dt+

∫ b

a

q(t)u(t)v(t)dt = λ

∫ b

a

f(t, u(t))v(t)dt ∀v ∈ X.
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Clearly, if f is continuous, p ∈ C1([a, b]) and q ∈ C0([a, b]), then the weak
solutions of (RSλ) are classical solutions.

It is well known that (X, || · ||) is compactly embedded in (C0([a, b]), || · ||∞)
and one has

(2) ||u||∞ ≤

√

b− a

p0
||u|| ∀u ∈ X.

In order to study problem (RSλ), we will use the functionals Φ, Ψ : X → R

defined by putting

(3) Φ(u) :=
1

2
||u||2, Ψ(u) :=

∫ b

a

F (t, u(t))dt ∀u ∈ X,

Φ is continuous and convex, hence it is weakly sequentially lower semicon-
tinuous. Moreover Φ is continuously Gâteaux differentiable and its Gâteaux
derivative admits a continuous inverse. On the other hand, Ψ is Gâteaux dif-
ferentiable with compact derivative and one has

Φ′(u)(v) =

∫ b

a

p(t)u′(t)v′(t)dt+

∫ b

a

q(t)u(t)v(t)dt,

Ψ′(u)(v) =

∫ b

a

f(t, u(t))v(t)dt ∀v ∈ X,

moreover

Φ(0) = Ψ(0) = 0.

A critical point for the functional Φ− λΨ is any u ∈ X such that

Φ′(u)(v)− λΨ′(u)(v) = 0 ∀v ∈ X.

We can observe that each critical point for functional Φ − λΨ is a weak
solution for problem (RSλ).

Now, put

(4) k :=
3p0

6||p||∞ + 2(b− a)2||q||∞
,

where

||p||∞ := ess sup
t∈[a,b]

p(t), ||q||∞ := ess sup
t∈[a,b]

q(t).

3. Main results

Our main results are the following theorems.

Theorem 3.1. Assume that there exist three positive constants c, d and s with

c < d, s < 2 and a function µ ∈ L1([a, b]) such that

(i)
∫

a+b
2

a
F (t, ξ)dt > 0 ∀ξ ∈ [0, d];

(ii)
∫

b

a
max|ξ|≤c F (t,ξ)dt

c2
< k

∫
b
a+b
2

F (t,d)dt

d2 where k is given by (4);
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(iii) F (t, ξ) ≤ µ(t)(1 + |ξ|s)∀t ∈ [a, b] ∀ξ ∈ R.

Then, for each λ ∈
]

p0d
2

2(b−a)k
∫

b
a+b
2

F (t,d)dt
, p0c

2

2(b−a)
∫

b

a
max|ξ|≤c F (t,ξ)dt

[

the problem

(RSλ) has at least three weak solutions.

Proof. Our goal is to apply Theorem 1.2. Consider the Sobolev space X and
the operators defined in (3).

Now, we claim that (ii) ensures (a1) of Theorem 1.2. In fact, set r = p0c
2

2(b−a)

and consider the function ū ∈ X defined by putting

(5) ū(t) :=

{

2d
b−a

(t− a) if t ∈ [a, a+b
2 [

d if t ∈ [a+b
2 , b].

We observe

Φ(ū) :=
1

2
||ū||2

=
1

2

(

4d2

(b − a)2

∫
a+b
2

a

p(t)dt+
4d2

(b− a)2

∫
a+b
2

a

(t− a)2q(t)dt+ d2
∫ b

a+b
2

q(t)dt

)

from 0 < c < d by using the previous relation and (4) we have

0 < r < Φ(ū) <
p0d

2

2(b− a)k
.

In virtue of (i) we have

Ψ(ū) ≥

∫ b

a+b
2

F (t, d)dt.

Therefore, one has

(6)
Ψ(ū)

Φ(ū)
≥

2(b− a)k

p0d2

∫ b

a+b
2

F (t, d)dt.

From (2) if Φ(u) ≤ r, we have maxt∈[a,b] |u(t)| ≤ c therefore

(7) sup
Φ(u)≤r

Ψ(u) ≤

∫ b

a

max
|ξ|≤c

F (t, ξ)dt.

Hence, owing to (6), (7) and (ii) condition (a1) of Theorem 1.2 is verified.
We prove that the operator Φ− λΨ is coercive, in fact, for each u ∈ X , by

using (iii) one has

Φ(u)− λΨ(u) =
1

2
||u||2 − λ

∫ b

a

F (t, u(t))dt

≥
1

2
||u||2 − λ

∫ b

a

µ(t)(1 + |u(t)|s)dt

≥
1

2
||u||2 − λ

∫ b

a

µ(t)dt− λ

∫ b

a

µ(t)|u(t)|sdt.
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By using (2), we obtain

(8)

∫ b

a

|µ(t)||u(t)|sdt ≤ ||u||s∞

∫ b

a

|µ(t)|dt ≤

(

b− a

p0

)
s
2

||u||s||µ||1,

substituting (8) into previous relation, we have

Φ(u)− λΨ(u) ≥
1

2
||u||2 − λ||µ||1 − λ

(

b− a

p0

)
s
2

||u||s||µ||1

hence condition (a2) of Theorem 1.2 is verified. All assumptions of Theorem
1.2 are satisfied and the proof is complete. �

Now, we point out the following consequence of Theorem 3.1.

Corollary 3.1. Let f : R → R be a nonnegative continuous function and

p ∈ C1([a, b]), q ∈ C0([a, b]). Assume that there exist positive constants µ, c, d

and s, with c < d and s < 2, such that

(i’) F (c)
c2

< k
2
F (d)
d2 where k is given by (4);

(ii’) F (ξ) ≤ µ(1 + |ξ|s) ∀ξ ∈ R.

Then, for each λ ∈
]

p0d
2

(b−a)2kF (d) ,
p0c

2

2(b−a)2F (c)

[

the problem (RSλ) has at least

three classical solutions.

Other main result is the following theorem.

Theorem 3.2. Assume that there exist three positive constants c1, c2 and d

such that c1 < d <

√

k
2 c2 and

(j)
∫ b

a
max|ξ|≤c1 F (t, ξ)dt

c21
<

2

3
k

∫ b
a+b
2

F (t, d)dt

d2
,

∫ b

a
max|ξ|≤c2 F (t, ξ)dt

c22
<

1

3
k

∫ b
a+b
2

F (t, d)dt

d2
,

where k is given by (4).

Then, for each λ ∈
]

p0d
2

2(b−a)k
∫

b
a+b
2

F (t,d)dt
, p0

2(b−a) min{
c21∫

b

a
max|ξ|≤c1

F (t,ξ)dt
,

c22
2∫

b

a
max|ξ|≤c2

F (t,ξ)dt
}
[

the

problem (RSλ) has at least three weak solutions ui (i = 1, 2, 3) such that

||ui||∞ < c2 i = 1, 2, 3.

Proof. Our goal is to apply Theorem 1.3. Consider the Sobolev spaceX and the
operators defined in (3). Taking into account that the regularity assumptions
on Φ and Ψ are satisfied and that, owing to the Maximum Principle (see [4]),
(b3) holds, our aim is to verify (b1) and (b2). To this end, put ū as in (5),

r1 =
p0c

2
1

2(b−a) , r2 =
p0c

2
2

2(b−a) one has 2r1 < Φ(ū) < r2
2 and, by using (j)

∫ b

a
max|ξ|≤c1 F (t, ξ)dt

c21
<

2

3

Ψ(ū)

Φ(ū)
,

∫ b

a
max|ξ|≤c2 F (t, ξ)dt

c22
<

1

3

Ψ(ū)

Φ(ū)
.
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All assumptions of Theorem 1.3 are satisfied and the proof is complete. �

If f : R → R is a non negative continuous function, p ∈ C1([a, b]) and
q ∈ C0([a, b]) are positive functions, the assumptions of Theorem 3.2 take a
simpler form:

Corollary 3.2. Assume that there exist three positive constants c1, c2 and d

with c1 < d <

√

k
2 c2

F (c1)

c21
<

1

3
k
F (d)

d2
,

F (c2)

c22
<

1

6
k
F (d)

d2
,

where k is given by (4).

Then, for each λ ∈
]

p0d
2

(b−a)2kF (d) ,
p0

2(b−a)2 min{
c21

F (c1)
,

c22
2

F (c2)
}
[

the problem (RSλ)

has at least three classical solutions ui (i = 1, 2, 3) such that

||ui||∞ < c2, i = 1, 2, 3.

4. Consequences and examples

Now, consider the following problem

(9)

{

−(p̄u′)′ + r̄u′ + q̄u = λg(t, u) in I = ]a, b[
u(a) = u′(b) = 0,

where g : [a, b]×R → R is a continuous function, p̄ ∈ C1([a, b]), q̄, r̄ ∈ C0([a, b])
and λ is a positive parameter. Moreover p̄, q̄ are positive functions and R is a
primitive of r̄

p̄
.

Put G(t, x) =
∫ x

0 g(t, ξ)dξ for all (t, x) ∈ [a, b]× R

(10) k̄ :=
3mint∈[a,b](e

−Rp̄)

6||e−Rp̄||∞ + 2(b− a)2||e−Rq̄||∞
.

Observe that the solutions of the problem

(11)

{

−(e−Rp̄u′)′ + e−Rq̄u = λe−Rg(t, u) in I = ]a, b[
u(a) = u′(b) = 0

are solutions of the problem (9). Hence, in virtue of Theorems 3.1 and 3.2 we
obtain the following results.

Theorem 4.1. Assume that there exist three positive constants c, d and s with

c < d, s < 2 and a function µ ∈ L1([a, b])such that

(i1) G(t, ξ) > 0 ∀t ∈ [a, b] ∀ξ ∈ [0, d];

(ii2)
∫

b

a
e−R(t) max|ξ|≤c G(t,ξ)dt

c2
< k̄

∫
b
a+b
2

e−R(t)G(t,d)dt

d2 where k̄ is given by (10);
(iii3) G(t, ξ) ≤ µ(t)(1 + |ξ|s), ∀t ∈ [a, b], ∀ξ ∈ R.
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Then, for each λ ∈
] mint∈[a,b](e

−R(t) p̄(t))d2

2(b−a)k̄
∫

b
a+b
2

e−R(t)G(t,d)dt
,

mint∈[a,b](e
−R(t) p̄(t))c2

2(b−a)
∫

b

a
max|ξ|≤c e−R(t)G(t,ξ)dt

[

the

problem (9) has at least three classical solutions.

Theorem 4.2. Let g be a positive continuous function and assume that there

exist three positive constants c1, c2 and d with c1 < d <

√

k̄
2 c2 such that

(j’)

∫ b

a
e−R(t) max|ξ|≤c1 G(t, ξ)dt

c21
<

2

3
k̄

∫ b
a+b
2

e−R(t)G(t, d)dt

d2
,

∫ b

a
e−R(t) max|ξ|≤c2 G(t, ξ)dt

c22
<

1

3
k̄

∫ b
a+b
2

e−R(t)G(t, d)dt

d2
,

where k̄ is given by (10).

Then, for each

λ ∈
] mint∈[a,b](e

−R(t) p̄(t))d2

2(b−a)k̄
∫

b
a+b
2

e−R(t)G(t,d)dt
,
mint∈[a,b](e

−R(t) p̄(t))

2(b−a) min{
c21∫

b

a
max|ξ|≤c1

e−R(t)G(t,ξ)dt
,

c22
2∫

b

a
max|ξ|≤c2

e−R(t)G(t,ξ)dt
}
[

the problem (9) has at least three classical solutions ui (i = 1, 2, 3) such that

||ui||∞ < c2, i = 1, 2, 3.

Now we point out the following application of Theorem 4.2 to the au-
tonomous case.

Theorem 4.3. Let g : R → R be a non-negative continuous and non-zero

function such that

(12) lim
x→0+

g(x)

x
= lim

x→+∞
g(x)

x
= 0.

Then, for each λ > λ∗, where

λ∗ = inf{
mint∈[a,b](e

−R(t)p̄(t))d2

2(b− a)k̄
∫ b

a+b
2

e−R(t)dt
∫ d

0
g(ξ)dξ

: d > 0,

∫ d

0

g(ξ)dξ > 0}

the problem
{

−(p̄u′)′ + r̄u′ + q̄u = λg(u) in I = ]a, b[
u(a) = u′(b) = 0

has at least two non-zero classical solutions.

Proof. Fix λ > λ∗ and put G(x) =
∫ x

0
g(ξ)dξ for all x ∈ R, there exists d > 0

such that λ >
mint∈[a,b](e

−R(t) p̄(t))d2

2(b−a)k̄
∫

b
a+b
2

e−R(t)dtG(d)
.

From (12) there is c1 > 0 such that c1 < d and G(c1)
c21

<
mint∈[a,b](e

−R(t)p̄(t))

3λ(b−a)
∫

b

a
e−R(t)dt

,

and there is c2 > 0 such that d <

√

k̄
2 c2 and G(c2)

c22
<

mint∈[a,b](e
−R(t) p̄(t))

6λ(b−a)
∫

b

a
e−R(t)dt

, where

k̄ is given by (10). The conclusion follows from Theorem 4.2. �
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Remark 4.1. Theorem 1.1 in the introduction is a consequence of Theorem 4.3
taking (10) into account.

Example 4.1. The problem
{

−u′′ + u′ + e2tu = 2λtetu10(11− u) in I = ]0, 1[
u(0) = u′(1) = 0

admits at least three classical solutions for each λ ∈ ] 3+e
26·15 ,

6
11e [.

In fact, if we choose, for example, c = 1 and d = 2, hypotheses of Theorem
4.1 are satisfied.

Remark 4.2. In ([1]), it has been studied a mixed boundary problem of type
{

−
(

|u′|s−2u′)′ + |u|s−2u = λf(t, u) in I = ]a, b[
u(a) = u′(b) = 0.

We observe that the case studied, when s = 2, gives back our case with
p = q = 1. It is important noticing that, differently from the previous cited
paper the coefficients p and q of our equation can depend on variable t, then
the results of ([1]) can not applied to Example 4.1.

Example 4.2. The problem
{

−u′′ + u = λe−uu2(3− u) in I = ]0, 1[
u(0) = u′(1) = 0

admits at least three classical solutions for each λ ∈ ] 8e3 ,
50
7 e−

7
100 [⊂ [0, 8].

In fact, if we choose, for example, c = 7
100 and d = 1, hypotheses of Theorem

3.1 are satisfied.

Remark 4.3. The Example 4.2 has been studied in ([5]) obtaining the existence
of at least three solutions for each λ ∈ Λ ⊆ [0, 8], but the open interval Λ was
not established while we obtain precise values of parameter λ.

Example 4.3. Consider the following problem
{

−u′′ + u = λt · h(u) in I = ]0, 1[
u(0) = u′(1) = 0

where h : R → R

h(x) :=















1, if t ∈ ]−∞, 1];
x10, if t ∈ ]1, 2];
210, if t ∈ ]2, 800];
x2, if t ∈ ]800,+∞[;

admits at least three classical solutions ui (i = 1, 2, 3) for each

λ ∈ ]
27 · 11

32(5 + 210)
,

28 · 53

1−211

11 + 214 · 5
[

such that |ui(t)| < 800 for all t ∈ [0, 1].
In fact, if we choose, for example, c1 = 1, c2 = 800 and d = 2, hypotheses of

Theorem 3.2 are satisfied.
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Remark 4.4. The Theorem 3.1 can not applied to Example 4.3 because the
function is positive but it is not sub-linear at infinity.
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paper.
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Facoltà di Ingegneria
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