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EXISTENCE OF THREE SOLUTIONS FOR A MIXED
BOUNDARY VALUE PROBLEM WITH THE
STURM-LIOUVILLE EQUATION

DIEGO AVERNA, NICOLO GIOVANNELLI, AND ELISABETTA TORNATORE

ABSTRACT. The aim of this paper is to establish the existence of three
solutions for a Sturm-Liouville mixed boundary value problem. The ap-
proach is based on multiple critical points theorems.

1. Introduction

The aim of this paper is to establish, under a suitable set of assumptions, the
existence of at least three solutions for the following Sturm-Liouville problem
with mixed boundary conditions

—(pu) + qu=Af(t,u) in I =]a,b|
() Lt o
where A is a positive parameter and p, g, f are regular functions. To be precise,
if f:[a,b] x R — R is a L2-Carathéodory function and p,q € L*([a, b]) such
that

:=essinf p(t) > 0, :=essinfq(t) > 0,
po t€la,b] p( ) 1 t€la,b] q( ) -

then we prove the existence of three weak solutions for problem (RS)) (see
Theorems 3.1 and 3.2). Clearly, when f : [a,b] x R — R is a continuous
function, p € C*([a,b]) and ¢ € C°([a,b]), the solutions of (RS)) are actually
classical (see for instance Corollaries 3.1 and 3.2).

The problem (RSy) with p = ¢ = 1 has been studied in [5] (see also [1])
but it is worth noticing that our results assure a more precise conclusion. In
fact, in [5] precise values of parameters A were not established, and in [1] an
asymptotic condition at infinity was assumed (see Remark 4.2).

In our main results a precise interval of real parameters A for which the
problem (RS)) admits at least three solutions is established and, in addition,
in Theorem 3.2 no asymptotic condition at infinity is assumed. Further, since p
and ¢ are variable functions, our results can be applied when the equation is in
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a complete form (see Section 4). Here, as an example, we present the following
result which is a particular case of Theorem 4.3 (see Remark 4.1).

Theorem 1.1. Let g : R — R be a non-negative continuous and non-zero
function such that
lim _g(x) = lim _g(x)

r—0t+ X r—+o0 T

=0.
Then, the problem
(P)

3y Ny o de . d? . d .
for each A > X\, where A = 576D mf{fodg(g)dg :d >0, [5 g(&)de > 0}, admits

at least two non-zero classical solutions.

{ —u" 4+ u +u=Ag(u) in I=]0,1]
u(0) = (1)=0

Our main tools are three critical points theorems that here recall in a conve-
nient form. Theorem 1.2 has been obtained in [3], it is a more precise version
of Theorem 3.2 of [2] and the coercivity of the functional ® — AV is required,
Theorem 1.3 has been established in [2] and a suitable sign hypothesis is as-
sumed.

Theorem 1.2 ([3, Theorem 3.6]). Let X be a reflexive real Banach space,
®: X — R be a continuously Gateaux differentiable, coercive and sequentially
weakly lower semicontinuous functional whose Gateaux derivative admits a con-
tinuous inverse on X*, ¥ : X — R be a continuously Gateaux differentiable
functional whose Géteaux derivative is compact. Assume that

$(0) = ¥(0) = 0,

and that there exist r € R and @ € X, with 0 < r < ®(u), such that
(al) Squ)(u)gr‘Il(u) < W (a)

T P(a)’

(ag) for each A € A, ::]%, m[ the functional ® — AV is coer-

cive.
Then, for each A € A,., the functional ® — AV has at least three distinct critical
points in X.

Theorem 1.3 ([2, Corollary 3.1]). Let X be a reflexive real Banach space,
P : X — R be a continuously Gateaux differentiable, coercive and sequentially
weakly lower semicontinuous functional whose Gateaux derivative admits a con-
tinuous inverse on X*, ¥ : X — R be a continuously Gateaux differentiable
functional whose Gateaux derivative is compact, such that

®(0) = W(0) = 0.

Assume that there exist two constants v and ro and a function u € X with

2r; < ®(u) < %, such that

SUP (u)<r W (u)
(bl) % <
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su W (u G
(b2) pq)(u)’,irz (u) < %gga;’
.—132(@) r 2
(bg) for each A € Ay, r, .f]%m,mm{ Supq}(u);l Ty Sup@(u);2 \I,(u)}[ and

for every uy, us € X, which are local minima for the functional ® — AV,
and such that W(uy) > 0 and ¥(uz) > 0 one has inf o, 1) ¥ (sur + (1 —
s)ug) > 0.
Then, for each A € A, r, the functional ® — AV admits at least three critical
points which lie in ®~1(] — oo, ra[).

2. Mixed boundary value problem
Consider problem (RS)), assume that p,q € L*°([a, b]) such that
po :=essinf p(t) > 0, qo := essinfq(t) > 0.
tela,b] tela,b]

We recall that a function f : [a,b] x R — R is said a L!'-Carathéodory
function if

- t — f(t, ) is measurable for every x € R;
- — f(t, ) is continuous for almost every t € [a, b];
- for every p > 0 one has sup, <, |f(t,z)| € L'([a,b]) for almost every
t € [a,b].
Put

Ft) = /0 " p(€)de

for all (t,x) € [a,b] x R.
Denote by

X :={uec W'?([a,b]) : u(a) = 0}
the space endowed with the following norm

b b
lul|x = (/ u2(t)dt+/ (u’(t))th>

For every u,v € X, we define

1
2

b

b
(1) (u,v) ::/ p(t)u'(t)v'(t)dt+/ q(t)u(t)v(t)dt.

a

We observe that (1) defines an inner product on X whose corresponding norm

lull = ( [ vy [ q<t><u<t>>2dt>

A simple computation shows that the norm ||-|| is equivalent to the usual one.

2

A function u € X is said a weak solution of problem (RS)) if

b b b
/ p(t)u’(t)v’(t)dt+/ q@®)u(t)v(t)dt = /\/ fGu@®)v(@)dt  Yoe X.
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Clearly, if f is continuous, p € C([a,b]) and ¢ € C°([a, b]), then the weak
solutions of (RS)) are classical solutions.

It is well known that (X, ]| -||) is compactly embedded in (C°([a,b]), || |]oo)
and one has

(2) [lulloo < IIUII Vu e X.
In order to study problem (RS} ), we will use the functionals ®, ¥ : X — R
defined by putting

b
3) B(u) ::%||u||2, ¥ (u) ;z/ Flt,u(t)dt  ue X,

® is continuous and convex, hence it is weakly sequentially lower semicon-
tinuous. Moreover ® is continuously Gateaux differentiable and its Gateaux
derivative admits a continuous inverse. On the other hand, ¥ is Gateaux dif-
ferentiable with compact derivative and one has

b

b
&' (u) (1) = / p(t) (0 (t)dt + / a(tyu(tyo(t)dt,

a

/ftu t)ydt Vv e X,

moreover
®(0) =¥(0)=0.
A critical point for the functional ® — AV is any u € X such that
&' (u)(v) — AV (u)(v) =0 Yv e X.
We can observe that each critical point for functional ® — AU is a weak
solution for problem (RS)).

Now, put
3po
(4) = :
6/[pl[oc +2(b — a)?|[ql[
where
|[pl|oc := esssupp(t), llq||oo := esssupq(t).
tela,b] te(a,b]

3. Main results
Our main results are the following theorems.

Theorem 3.1. Assume that there exist three positive constants ¢, d and s with
c<d, s <2 and a function p € L'([a,b]) such that

@) 3 Ftedt >0 vee o, d)

b max Soxs F(t,d)dt
(ii) Lo/ ma lel<- Peodt g 5 pe where k is given by (4);
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(i) F(t,€) < pu(t)(1+ |¢]*) ¥ € [a,b] Ve € R.

pod® poc®
Then, for each \ € }Q(b_a)k fL Flod)dt’ 20—a) 7 ma‘(;\ﬁ\fc F(t,g)dt[ the problem

(RS)) has at least three weak solutions.

Proof. Our goal is to apply Theorem 1.2. Consider the Sobolev space X and
the operators defined in (3).
Now, we claim that (ii) ensures (a;) of Theorem 1.2. In fact, set r = 2%’;’51)
and consider the function @ € X defined by putting
2d : a+b
(T — ft _=
(5) alt) = { poa(t—a) 1 £ € o 550

d if ¢ e [%f2,p).
We observe

o(a) = =1l

2
+b a+b
2

1 4@ [ 4d? 2 o "
=3 <m/a p(t)dt + (b_T)Q/a (t —a)*q(t)dt +d /Mq(t)dt>

2
from 0 < ¢ < d by using the previous relation and (4) we have
_ pod®
0<r<®(u) < .
r< 2 < 5o

In virtue of (i) we have

b
W (1) > / P(t, d)dt.
Therefore, one has
U(a) _ 2(b—a)k /b
6 > F(t,d)dt.
(6) 51 2 gt o 0
From (2) if ®(u) <7, we have max;e(q,) |u(t)| < ¢ therefore

b
(7) sup U(u) < [ maxF(t,§)dt.
P(u)<r a l€l<c

Hence, owing to (6), (7) and (ii) condition (a1) of Theorem 1.2 is verified.
We prove that the operator & — AW is coercive, in fact, for each v € X, by
using (iii) one has

b
B(u) — AU(u) = %||u||2 - )\/ F(t,u(t))dt
b
> il = A [ (o + fuo) )

b b
> Sl =2 [ttt = [ uuorar
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By using (2), we obtain

S b % S
®) /m ()l dt < [lull2 /m |dt<( p0> all* s,

substituting (8) into previous relation, we have

1 b—a\?
B~ M) > gl = Al = A (=)l

hence condition (ag) of Theorem 1.2 is verified. All assumptions of Theorem
1.2 are satisfied and the proof is complete. O

Now, we point out the following consequence of Theorem 3.1.

Corollary 3.1. Let f : R — R be a nonnegative continuous function and
p € C([a,b]), ¢ € C%[a,b]). Assume that there exist positive constants p, ¢, d
and s, with ¢ < d and s < 2, such that

(1’) ) < ’;F;d) where k is given by (4);

(ii") F(f) < 1+ [€]7) V§ eR.

2

Then, for each A € }(b 5)2%cF(d)7 50 p;’)zF( )[ the problem (RS)) has at least
three classical solutions.

Other main result is the following theorem.
Theorem 3.2. Assume that there exist three positive constants c1, co and d
such that c; < d < \/502 and
() ,
f: max|¢| <., F(t,§)dt - Qkf%b E(t, d)dt

c? 3 d? ’
b b
Ju maxigi<e, F(8,E)dt 1, Jop P, d)dt
c3 3 d? ’
where k is given by (4).
o0d? 0 : c} é
Then, for each A € ]5 20—a)k f:,_ P Mo—ay min{ TP maxe <o, FOLE)A P maxje <oy F(t,{)dt}[ the

problem (RS)) has at least three weak solutions u; (1=1,2,3) such that
||ui||oo<02 1=1,2,3.

Proof. Our goal is to apply Theorem 1.3. Consider the Sobolev space X and the

operators defined in (3). Taking into account that the regularity assumptions

on ® and ¥ are satisfied and that, owing to the Maximum Principle (see [4]),

(b3) holds, our aim is to verify (b1) and (b2). To this end, put @ as in (5),
ro

—2&“31), Ty = —2&“52) one has 2r; < ®(u) < 2 and, by using (j)

Y maxe|<e, F(t,€)dt 2% [P maxe|<e, F(t,€)dt _ 1@
c 3d(a)’ 3 3®(u)

T =
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All assumptions of Theorem 1.3 are satisfied and the proof is complete. [

If f: R — R is a non negative continuous function, p € C'([a,b]) and
q € C°([a,b]) are positive functions, the assumptions of Theorem 3.2 take a
simpler form:

Corollary 3.2. Assume that there exist three positive constants c1, ca and d

with ¢; < d < \/%CQ
F 1. F(d

c? 35 d2 7

Fle) 1. F(d)
—k

c3 S8 e

where k is given by (4).

2 o2 3
Then, for each \ € ] (b—;)oziF(d)’ 2(1)’2’&)2 min{ F(él), F(iZ)}[ the problem (RS))
has at least three classical solutions u; (i =1,2,3) such that

[|uilloo <2, ©=1,2,3.

4. Consequences and examples

Now, consider the following problem

{ —(pu') +7u + qu = Ag(t,u) in I =]a,b]

(9) u(a) = u'(b) = 0,

where g : [a,b] x R — R is a continuous function, p € C([a,b]), ¢, 7 € C°([a, b))
and A is a positive parameter. Moreover p, ¢ are positive functions and R is a
primitive of %.

Put G(t,z) = [; g(t,£)d¢ for all (t,z) € [a,b] x R

- Sminte[a,b] (e_Rﬁ)
 6[lemFplloo +2(b — a)?[|e~ ||

(10)

Observe that the solutions of the problem
(11) { —(e Bpu) + e Rqu = Ae Fg(t,u) in I =]a,b]

u(a) =u'(b) =0
are solutions of the problem (9). Hence, in virtue of Theorems 3.1 and 3.2 we
obtain the following results.

Theorem 4.1. Assume that there exist three positive constants ¢, d and s with
c<d, s <2 and a function u € L*([a,b])such that
(1) G(t,€) >0 viela,b] VE€l0,d];

b =R _Jap e MOGd)at _
(iiz) Lo ma:f‘SCG(t’g)dt <k———% where k is given by (10);

(iii) G(2,§) < p()(1 +[£]%), Vt € [a,b], VEER.
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. —R(t) = 2 : —R(t) = 2
mingepaq,p) (e p(t))d mingepaq,p) (e p(t))c
Then, for each A € } 2(b—a)k f@ e~ RO G(t,d)dt’ 2(b—a) [P max¢ <. e~ B G(t,€)dt [ the

problem (9) has at least three classical solutions.
Theorem 4.2. Let g be a positive continuous function and assume that there

exist three positive constants c1, co and d with c1 < d < \/ECQ such that

(@)

I e RO max ¢ <., G(t, €)dt 2 f@ e BOG(t, d)dt
2 3 d? ’
2 e RO maxe <., G(t, €)dt ) l;;f% e BOG(t, d)dt
c3 3 d? ’
where k is given by (10).
Then, for each )
rel I(L);[fifif’jgzidd)d/ mim[u?bgb(ijmﬂt)) min{ 77 mawgq(ffwcu.,e)dz’ IR mawgj*mﬂcu,a)d/,}[

the problem (9) has at least three classical solutions u; (i = 1,2,3) such that
luilloo < €2, i=1,2,3.

Now we point out the following application of Theorem 4.2 to the au-
tonomous case.

Theorem 4.3. Let g : R — R be a non-negative continuous and non-zero
function such that

(12) lim M = lim M =0.

z—0t X T—=+oo T

Then, for each A > \*, where
minye (4 5)(¢” "V p(t))d?
2(b— a)k [ e ROt [ g(€)de

d
A = inf{ L d>0, / g(€)de > 0}
0

the problem
—(pu') + 7' + qu = Ag(u) in I =]a,b]
{ u(a) =u/'(b) =0
has at least two non-zero classical solutions.

Proof. Fix A > A\* and put G(z) = foz g(&)d¢ for all x € R, there exists d > 0
rﬂinte[a,b](671%(75)13(15))‘12

such that A > 2b—a)k [0, e B dLG(d)’
“g

. G(c1) mingeq,b] (e~ " Wp(t))
From (12) there is ¢; > 0 such that ¢; < d and cfl < Sx-a) [P Rat

. k G(c2) minte[a,b](eiR(t)ﬁ(t))
and there is ¢o > 0 such that d < \/202 and 3 < oA(b—a) [Te RO dt where

k is given by (10). The conclusion follows from Theorem 4.2. O
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Remark 4.1. Theorem 1.1 in the introduction is a consequence of Theorem 4.3
taking (10) into account.

Example 4.1. The problem
—u" +u' 4 e?'u = 2Xte'u!?(11 —u) in I =]0,1]
u(0) =u'(1)=0

3+e 6

admits at least three classical solutions for each A € |55, 17z [-

In fact, if we choose, for example, ¢ = 1 and d = 2, hypotheses of Theorem
4.1 are satisfied.

Remark 4.2. In ([1]), it has been studied a mixed boundary problem of type

— (W *~2u) + [uf*~2u = Af(t,u) in T =]a,b]
u(a) = u/(b) = 0.

We observe that the case studied, when s = 2, gives back our case with

p = q = 1. It is important noticing that, differently from the previous cited

paper the coefficients p and ¢ of our equation can depend on variable ¢, then

the results of ([1]) can not applied to Example 4.1.
Example 4.2. The problem
—u" +u=Xe""u?3—u) in I =]0,1]
u(0)=u(1)=0
admits at least three classical solutions for each A €]¢, 5—70671_30 [C[0,8].
In fact, if we choose, for example, ¢ = % and d = 1, hypotheses of Theorem
3.1 are satisfied.

Remark 4.3. The Example 4.2 has been studied in ([5]) obtaining the existence
of at least three solutions for each A € A C [0, 8], but the open interval A was
not established while we obtain precise values of parameter A.

Example 4.3. Consider the following problem
—u" +u=A-h(u) in I=]0,1]
uw(0)=u(1)=0

where h: R - R

1, if t €] —o00,1];

210 if ¢ e]1,2];

210 if ¢ €]2,800];

22, if t €]800, +-o00[;

admits at least three classical solutions u; (i = 1,2, 3) for each

2711 28 .53 [
32(5 + 210)’ 1—12111 1ol 5
such that |u;(¢)] < 800 for all ¢ € [0, 1].

In fact, if we choose, for example, ¢; = 1, co = 800 and d = 2, hypotheses of
Theorem 3.2 are satisfied.

h(z) =

A €]
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Remark 4.4. The Theorem 3.1 can not applied to Example 4.3 because the
function is positive but it is not sub-linear at infinity.
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