DOI QR코드

DOI QR Code

EXISTENCE OF THREE WEAK SOLUTIONS FOR A CLASS OF NONLINEAR OPERATORS INVOLVING p(x)-LAPLACIAN WITH MIXED BOUNDARY CONDITIONS

  • Aramaki, Junichi (Division of Science, Faculty of Science and Engineering Tokyo Denki University)
  • Received : 2020.12.09
  • Accepted : 2021.03.10
  • Published : 2021.09.15

Abstract

In this paper, we consider a mixed boundary value problem to a class of nonlinear operators containing p(x)-Laplacian. More precisely, we consider the problem with the Dirichlet condition on a part of the boundary and the Steklov boundary condition on an another part of the boundary. We show the existence of at least three weak solutions under some hypotheses on given functions and the values of parameters.

Keywords

References

  1. M. Allaoui, A.R. El Amorousse and A. Ourraoui, Existence and multiplicity of solutions for a Steklov problem involving the p(x)-Laplace operator, Electron. J. Diff. Eqs., 132 (2012), 1-12.
  2. J. Aramaki, Existence of weak solutions for a nonlinear problem involving p(x)-Laplacian operator with mixed boundary problem, submitted.
  3. J. Aramaki, Existence of weak solution for a class of abstract coupling system associated with stationary electromagnetic system, Taiwanese J. Math., 22(3) (2018), 741-765. https://doi.org/10.11650/tjm/180203
  4. J. Aramaki, Existence of weak solutions to stationary and evolutionary Maxwell-Stokes type problems and the asymptotic behavior of the solution, Adv. Math. Sci. Appl., 28(1) (2019), 29-57.
  5. J. Aramaki, Existence and regularity of a weak solution to a class of systems in a multi-connected domain, J. Partial Diff. Eqs., 32(1) (2019), 1-19.
  6. M. Avci, Existence and multiplicity of solutions for Dirichlet problems involving the p(x)-Laplace operator, Electron. J. Diff.l Eqs., 14 (2013), 1-9.
  7. A. Ayoujil, Existence results for Steklov problem involving the p(x)-Laplacian, Complex Var. and Elliptic Equ., 63 (2017), 1675-1686. https://doi.org/10.1080/17476933.2017.1403425
  8. F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer, Yew York, Heidelberg, Dordrecht, London (2013).
  9. S.G. Deng, Existence of the p(x)-Laplacian Steklov problem, J. Math. Anal. Appl., 339 (2008), 925-937. https://doi.org/10.1016/j.jmaa.2007.07.028
  10. L. Diening, Theoretical and numerical results for electrorheological fluids, ph. D. thesis, University of Frieburg, Germany 2002.
  11. L. Diening, P. Harjulehto, P. Hasto and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lec. note in Math. Springer, 2011.
  12. X.L. Fan, Solutions for p(x)-Dirichlet problems with singular coefficients, J. Math. Anal. Appl., 312 (2005), 749-760.
  13. X.L. Fan and Q.H Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852. https://doi.org/10.1016/S0362-546X(02)00150-5
  14. X.L. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl., 263 (2001), 424-446. https://doi.org/10.1006/jmaa.2000.7617
  15. X.L. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302 (2015), 306-317. https://doi.org/10.1016/j.jmaa.2003.11.020
  16. T.C. Halsey, Electrorheological fluids, Science, 258 (1992), 761-766. https://doi.org/10.1126/science.258.5083.761
  17. C. Ji, Remarks on the existence of three solutions for the p(x)-Laplacian equations, Nonlinear Anal., 74 (2011), 2908-2915. https://doi.org/10.1016/j.na.2010.12.013
  18. O. Kovacik and J. Rakosnic, On spaces Lp(x)(Ω) and Wk,p(x)(Ω). Czechoslovak Math. J., 41(116) (1991), 592-618. https://doi.org/10.21136/CMJ.1991.102493
  19. M. Mihailescu and V. Radulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. Royal Soc. A., 462 (2006), 2625-2641. https://doi.org/10.1098/rspa.2005.1633
  20. B. Ricceri, A further three critical points theorem, Nonlinear Anal., 71 (2009), 4151-4157. https://doi.org/10.1016/j.na.2009.02.074
  21. M. Ruzicka, Electrotheological fluids: Modeling and Mathematical Theory, Lec. note in Math., Vol. 1784, Berlin, Springer-Verlag, 2000.
  22. Z. Wei and Z. Chen, Existence results for the p(x)-Laplacian with nonlinear boundary condition, Appl. Math., (2012), Article ID 727398.
  23. Z. Yucedag, Solutions of nonlinear problems involving p(x)-Laplacian operator, Adv. Nonlinear Anal., 4(4) (2015), 1-9. https://doi.org/10.1515/anona-2014-0026
  24. Z. Yucedag, Existence results for Steklov problem with nonlinear boundary condition, Middle East J. of Sci., 5(2), (2019), 146-154. https://doi.org/10.23884/mejs.2019.5.2.06
  25. E. Zeidler, Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators, Springer-Verlag, Now York, Berlin, Heidelberg, London, Paris, Tokyo, 1986.
  26. D. Zhao, W.J. Qing and X.L. Fan, On generalized Orlicz space Lp(x)(Ω), J. Gansu Sci., 9(2) (1996), 1-7.
  27. V.V. Zhikov, Averaging of functionals of the calculus of variation and elasticity theory, Math. USSR, Izv., 29 (1987), 33-66. https://doi.org/10.1070/IM1987v029n01ABEH000958