• Title/Summary/Keyword: mismatched uncertainties

Search Result 39, Processing Time 0.018 seconds

The Design of a Robust Linear Time-invariant Feedback Compensator Guaranteeing Uniform Ultimate Boundedness for Uncertain Multivariable Systems (Uniform ultimate boundedness를 보장하는 선형 시블변 되먹임 보상기 설계)

  • Choi, Han-Ho;Yoo, Dong-Sang;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.678-681
    • /
    • 1991
  • In this paper, we propose a robust linear time-invariant feedback compensator design methodology for multivariable system which have both matched and mismatched uncertainties. In order to attack the problem of designing robust compensators guaranteeing uniform ultimate boundedness of every closed-loop system response within an arbitrarily small ball centered at the zero state based solely on the knowledge of the upper norm-bounds of uncertainties, we use an approach based upon the comparison theorem which is an effective approach in studying augmented feedback control systems with both mismatched and matched uncertainties. Through the approach, we draw some sufficient conditions for robust stability, and we give a simple example.

  • PDF

Multiple Sliding Surface Control Approach to Twin Rotor MIMO Systems

  • Van, Quan Nguyen;Hyun, Chang-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.171-180
    • /
    • 2014
  • In this paper, a multiple sliding surface (MSS) controller for a twin rotor multi-input-multioutput system (TRMS) with mismatched model uncertainties is proposed. The nonlinear terms in the model are regarded as model uncertainties, which do not satisfy the standard matching condition, and an MSS control technique is adopted to overcome them. In order to control the position of the TRMS, the system dynamics are pseudo-decomposed into horizontal and vertical subsystems, and two MSSs are separately designed for each subsystem. The stability of the TRMS with the proposed controller is guaranteed by the Lyapunov stability theory. Some simulation results are given to verify the proposed scheme, and the real time performances of the TRMS with the MSS controller show the effectiveness of the proposed controller.

Robust Control Design for Flexible Joint Manipulators: Theory and Experimental Verification

  • Kim Dong-Hwan;Oh Won-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.495-505
    • /
    • 2006
  • A class of robust control for flexible joint manipulators with nonlinearity mismatched uncertainty is designed based on Lyapunov approach. The uncertainties are unknown but their values are within certain prescribed sets. No statistic information of the uncertainties is imposed. The control which utilizes state transformation via virtual control is proposed. The resulting robust control guarantees practical stability for the transformed system and later the stability for the original system is proved. The designed robust control is implemented by experiments in a 2-link flexible joint manipulator.

LMI Parameterization of Lineny Sliding Surfaces for Mismatched Uncertain Systems (정합조건을 만족시키지 않는 불확실한 시스템을 위한 선형 슬라이딩 평면의 LMI 매개변수화)

  • Lee, Jae-Kwan;Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.907-912
    • /
    • 2005
  • In this paper, we consider the problem of designing sliding surfaces fur a class of dynamic systems with mismatched uncertainties in the state space model. In terms of LMIs, we give necessary and sufficient conditions fir the existence of a linear sliding surface such that the reduced order sliding mode dynamics is asymptotically stable and completely independent of uncertainties. We parameterize all such linear sliding surfaces by using the solution to the given LMI conditions. And, we consider the problem of designing linear sliding surfaces guaranteeing pole placement constraints or $H_2/H_infty$ performances. Finally, we give a design example in order to show the effectiveness of our method.

An Improved Existence Condition of Linear Sliding Surfaces (선형 슬라이딩 평면의 개선된 존재 조건)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.851-855
    • /
    • 2007
  • This paper deals with the problem of designing a linear sliding surface design for a class of uncertain systems with mismatched unstructured uncertainties. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix as well as in the input matrix. In terms of linear matrix inequalities (LMIs), we give a sufficient condition for the existence of linear sliding surfaces guaranteeing the asymptotic stability of the sliding mode dynamics. We show that our LMI condition can be less conservative than the existing conditions and our result supplement the existing results. Finally, we give a numerical example showing that our method can be better than the previous results.

MIMO Variable Structure Control System with Sliding Sector (슬라이딩 섹터를 갖는 다중 입출력 가변 구조 제어 시스템)

  • Choi Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.524-529
    • /
    • 2006
  • In this paper, we propose a method to design variable structure systems with sliding sector for multi-input multi-output systems with mismatched uncertainties in the state matrix. For the uncertain systems we define sliding sectors within which a norm of the state decreases with zero input despite of mismatched uncertainties. Using the notion of the sliding sector we give simple design algorithms of variable structure control laws that can reduce the chattering. Finally, we give a design example in order to show the effectiveness of our method.

Estimation of the Asymptotic Stability Region for a Mismatched Uncertain Variable Structure System with a Bounded Controller (크기가 제한된 제어기를 갖는 비정합 불확실성의 가변구조 시스템을 위한 점근 안정 영역 추정)

  • Choi, Han-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.600-603
    • /
    • 2007
  • We propose a method to estimate the asymptotic stability region(ASR) of a mismatched uncertain variable structure system with a bounded controller. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix. Using linear matrix inequalities(LMIs) we estimate the ASR and we show the quadratic stability of the closed-loop control system in the estimated ASR. We also give a simple LMI-based algorithm for estimating the ASR. Finally, we give a numerical example in order to show the effectiveness of our method.

Variable Structure Control for a System with Mismatched Disturbances (입력과 매칭되지 않는 외란을 갖는 시스템에 대한 가변구조제어)

  • Choi, Yun-Jong;Park, Poo-Gyeon
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.149-151
    • /
    • 2007
  • For several decades, VSC has gained much attention as one of the useful design tools for handling the practical system with uncertainties or disturbances. Generally, the disturbances in the matching condition can be perfectly rejected via VSC; however, these in the mismatching condition are known to be hardly rejected. There have been some trials on it, in which the resulting controls in fact belong to the class of robust control guaranteeing disturbance ${\gamma}$-attenuation. Therefore, in this paper, we propose a new Variable Structure Control (VSC) for a system with mismatched disturbances. The proposed controller is composed of linear and nonlinear parts; the former plays a role in stabilizing the system and the latter takes care of attenuating the disturbances. The main contribution is to introduce the concept of switching-zone, rather than switching-surface, that is designed through piece-wise Lyapunov functions. The resulting non-convex conditions are formulated with an iterative linear programming algorithm, which provides an excellent performance of almost rejecting the disturbances.

  • PDF

Robust Decentralized Stabilization of Large-Scale Time-Delayed Linear Systems with Uncertainties via Sliding Mode Control (슬라이딩 모드 제어에 의한 불확정성을 가진 대규모 시간지연 선형 계통의 강인 분산 안정화)

  • 박장환;유정웅
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.139-144
    • /
    • 1999
  • The present paper is concerned with the robust decentralized stabilization problem of large-scale systems with time delays in the interconnections using sliding mode control. Based on Lyapunov stability theorem and H$_{\infty}$ theory, an existence condition of the sliding mode and a robust decentralized sliding mode controller are newly derived for large-scale systems under mismatched uncertainties. Finally, a numerical example is given to verify the validity of the results developed in this paper.

  • PDF

LMI-based Design of Integral Sliding Mode Controllers for Polytopic Models (폴리토픽 모델을 갖는 시스템을 위한 적분 슬라이딩 모드 제어기의 LMI 기반 설계)

  • Choi, Han-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.44-48
    • /
    • 2010
  • This paper presents an LMI-based method to design an integral sliding mode controller for an uncertain system with a polytopic model. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix as well as in the input matrix. Using LMIs we derive an existence condition of a sliding surface. And we give a switching feedback control law.