• Title/Summary/Keyword: minimum flow problem

Search Result 98, Processing Time 0.03 seconds

Algorithms for Maximum Integer Multiflow and Multicut in a Ring Network (링 네트워크에서의 최대 다품종정수흐름문제와 최소 다중절단면문제에 대한 해법)

  • Myung, Young-Soo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.2
    • /
    • pp.89-97
    • /
    • 2007
  • We study the maximum integer multiflow problem and the minimum multicut problem in a ring network. Both problems in a general network are known to be NP-hard. In this paper, we develop polynomial time algorithms to solve the problems. We also prove that even In a ring network, maximum multiflow is not always integral, which implies that the amount of maximum integer flow does not always reach the minimum capacity of multicut.

Maximum Capacity-based Minimum Cut Algorithm (최대 수용량-기반 최소절단 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.5
    • /
    • pp.153-162
    • /
    • 2011
  • The minimum cut problem is to minimize c(S,T), that is, to determine source S and sink T such that the capacity of the S-T cut is minimal. The flow-based algorithm is mostly used to find the bottleneck arcs by calculating flow network, and does not presents the minimum cut. This paper suggests an algorithm that simply includes the maximum capacity vertex to adjacent set S or T and finds the minimum cut without obtaining flow network in advance. On applying the suggested algorithm to 13 limited graphs, it can be finds the minimum cut value $_{\min}c$(S, T) with simply and correctly.

Finding Optimal Small Networks by Mathematical Programming Models (수리계획 모형을 이용한 최적의 작은 네트워크 찾기)

  • Choi, Byung-Joo;Lee, Hee-Sang
    • IE interfaces
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • In this paper we study the Minimum Edge Addition Problem(MEAP) to decrease the diameter of a graph. MEAP can be used for improving the serviceability of telecommunication networks with a minimum investment. MEAP is an NP-hard optimization problem. We present two mathematical programming models : One is a multi-commodity flow formulation and the other is a path partition formulation. We propose a branch-and-price algorithm to solve the path partition formulation to the optimality. We develop a polynomial time column generation sub-routine conserving the mathematical structure of a sub problem for the path partition formulation. Computational experiments show that the path partition formulation is better than the multi-commodity flow formulation. The branch-and-price algorithm can find the optimal solutions for the immediate size graphs within reasonable time.

Public Vehicle Routing Problem Algorithm (공공차량 경로문제 해법연구)

  • 장병만;박순달
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.14 no.2
    • /
    • pp.53-66
    • /
    • 1989
  • The Public Vehicle Routing Problem (PVRP) is to find the minimum total cost routes of M or less Public-Vehicles to traverse the required arcs(streets) at least once, and return to their starting depot on a directed network. In this paper, first, a mathematical model is formulated as minimal cost flow model with illegal subtour elimination constraints, and with the fixed cost and routing cost as an objective function. Second, an efficient branch and bound algorithm is developed to obtain an exact solution. A subproblem in this method is a minimal cost flow problem relaxing illegal subtour elimination constraints. The branching strategy is a variable dichotomy method according to the entering nonrequired arcs which are candidates to eneter into an illegal subtour. To accelerate the fathoming process, a tighter lower bound of a candidate subproblem is calculated by using a minimum reduced coast of the entering nonrequired arcs. Computational results based on randomly generated networks report that the developed algorithm is efficient.

  • PDF

ESTIMATION OF THE MINIMUM INSTREAM FLOWS FOR THE RIVERLINE AESTHETICS ON THE KEUM RIVER

  • Lee, Joo-Heon;Jeong, Sang-Man;Hong, Il-Pyo;Lee, Eun-Tae
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.299-307
    • /
    • 2000
  • The method for estimating the minimum instream flows required for the riverline aesthetics, proposed by the Kim et al.(1996), has been applied to the main channel reach of the Keum river basin in Korea. To determine the minimum instream flows for eight main reaches at Keum river basin, six representative stations have been selected. This paper provides an analysis of influence on the riverline aesthetics, which is affected by change of physical components of river, by using the survey-based quantification method. The developed questionnaire based on the literature, and submitted to the 326 people who visited an each representative station. This surveying had been implemented in three times at each representative station and we had been selected a different flowrate at each implementation. The results of this analysis and survey have produced the relationship between the variation of physical components and riverline aesthetics. Survey results bout the flow comparison are summarized as follows. At the view of riverline aesthetics, most of the respondents re sensitive at the change of the flow velocity and they prefer high water level to low water level. Moreover whole respondents prefer to abundant stream flows and moderate flow velocity. The minimum flows for riverline aesthetics is estimated at each representative station by using the survey-based quantification method and the estimated results of some representative station are greater than mean monthly flow at each station. The result of the analysis appears that establishing minimum instream flows for riverline aesthetics is not only a technical problem but a legal problem. Therefore in the case of establishing the instream flows in the river, the estimated results have to be considered as relative standard.

  • PDF

MODELS AND SOLUTION METHODS FOR SHORTEST PATHS IN A NETWORK WITH TIME-DEPENDENT FLOW SPEEDS

  • Sung, Ki-Seok;Bell, Michael G-H
    • Management Science and Financial Engineering
    • /
    • v.4 no.2
    • /
    • pp.1-13
    • /
    • 1998
  • The Shortest Path Problem in Time-dependent Networks, where the travel time of each link depends on the time interval, is not realistic since the model and its solution violate the Non-passing Property (NPP:often referred to as FIFO) of real phenomena. Furthermore, solving the problem needs much more computational and memory complexity than the general shortest path problem. A new model for Time-dependent Networks where the flow speeds of each link depend on time interval, is suggested. The model is more realistic since its solution maintains the NPP. Solving the problem needs just a little more computational complexity, and the same memory complexity, as the general shortest path problem. A solution algorithm modified from Dijkstra's label setting algorithm is presented. We extend this model to the problem of Minimum Expected Time Path in Time-dependent Stochastic Networks where flow speeds of each link change statistically on each time interval. A solution method using the Kth-shortest Path algorithm is presented.

  • PDF

The Random Type Quadratic Assignment Problem Algorithm

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.81-88
    • /
    • 2016
  • The optimal solution of quadratic assignment problem (QAP) cannot get done in polynomial time. This problem is called by NP-complete problem. Therefore the meta-heuristic techniques are applied to this problem to get the approximated solution within polynomial time. This paper proposes an algorithm for a random type QAP, in which the instance of two nodes are arbitrary. The proposed algorithm employs what is coined as a max flow-min distance rule by which the maximum flow node is assigned to the minimum distance node. When applied to the random type QAP, the proposed algorithm has been found to obtain optimal solutions superior to those of the genetic algorithm.

Priority-based Genetic Algorithm for Bicriteria Network Optimization Problem

  • Gen, Mitsuo;Lin, Lin;Cheng, Runwei
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.175-178
    • /
    • 2003
  • In recent years, several researchers have presented the extensive research reports on network optimization problems. In our real life applications, many important network problems are typically formulated as a Maximum flow model (MXF) or a Minimum Cost flow model (MCF). In this paper, we propose a Genetic Algorithm (GA) approach used a priority-based chromosome for solving the bicriteria network optimization problem including MXF and MCF models(MXF/MCF).

  • PDF

A Scheduling Method for the m-Machine n-Job Flow-Shop Problem by Gantt Chart (간트 차아트를 이용한 m-기계(機械) n-제품(製品)의 최적(最適) 흐름작업(作業) 순서결정(順序決定))

  • Kim, Nam-Su;Lee, Sang-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 1986
  • This paper is concerned with flow-shop permutation scheduling problem. This paper presents an algorithm for the minimum makespan sequence. The efficiency of proposed algorithm is demonstrated by comparisons with the existing algorithms: Johnson's, branch & bound method, and heuristic algorithms. The proposed algorithm is more effective than the other algorithms. A numerical example is given to illustrate the procedure.

  • PDF