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Abstract - In recent years, several researchers have
presented the extensive research reports on network
aptimization problems. In our real life applications, many
important network problems are typically formulated as
a Maximum Flow model (MXF) or a Minimum Cost Flow
model (MCF). In this paper, we propose a Genetic
Algorithm (GA) approach used a priority-based
chromosome for solving the bicriteria network
optimization problem including MXF and MCF models
{MXF/MCF).

1. INTRODUCTION

The MXF problem is to find the maximum flow from a
given source to a given sink. The MCF problem is also to
fnd how to supply flows from the sources to the sinks with
the minimum cost [1]{3]. In this paper, the objective is to find
the set of Pareto optimal solutions that give possible
maximum flow with minimum cost. Priority-based
chromosomes [2] have been used for encoding the network
optimization problem. This paper also combines Adaptive
Weight Approach (AWA) that utilizes some useful
information from the current population to readjust weights
for obtaining a search pressure toward a positive ideal point.
Ir is based on the Gen & Cheng’s Approach [4]. Computer
s:mulations show the several numerical experiments by using
several network optimization problems, and show the
¢fectiveness of the proposed method.

II. MXF/MCF PROBLEM FORMULATION

In a network with flow capacities and costs on the arcs, the
MXF/MCF problem is to determine the maximum possible
flow z; with minimum cost z, from a given source to a given
sink. An undirected graph G=(¥,4) comprises a set of nodes
i={1, 2, ..., m} and a set of arcs A€ V<V connecting nodes in
I Corresponding to each arc are tow nonnegative numbers ¢;
and u;; representing the cost and flow capacity, and others of
i-terest, form node 7 to node ;. The MXF/MCF problem can
b formulated as follows:
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III. PRIORITY-BASED GENETIC ALGORITHM APPROACH

A. Genetic Representation

A gene in a chromosome is characterized by two factors:
locus, the position of the gene within the structure of
chromosome, and allele, the value of the gene takes. The
position of a gene is used to represent a node, and the value is
used to represent the priority of the node for constructing a
path among candidates. The encoding method is denoted as
priority-based encoding [2]. 1t is also easy to verify that any
permutation of the encoding corresponds to the paths, so that
most existing genetic operators can easily be applied to the
encoding. Also, any path has a corresponding encoding;
therefore, any point in solution space is accessible for genetic
search.

procedure 1: priority-based encoding

input data: number of nodes m

output data: chromosome v;

step 0: allele vi(-)¢-0, the priority value pe1.

step 1: If p>m, go to step 4; otherwise, continue.

step 2: j<—random(1,m)

step 3: If vi(;j)=0, vi(j) ¢ p, p¢— p+1, return to step 1;

otherwise, return to step 2.

step 4: Output the chromosome v;.

procedure 2: one path growth
input data: number of nodes m, chromosome v, the set of
nodes S; with all nodes adjacent to node i

output data: path Py

step 0: the source node i«—1, P, <—¢

step 1: If S=¢, go to step 3; otherwise, continue.

step 2: Select / from the set of nodes S; with the highest
priority, Py «— Ppo{xy}, i<l

step 3: Output the complete path Py
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P =Xy, %) 0,5 X0, 45000 X0, }
procedure 3: overall paths growth
input data: network data(¥, 4, C, U), chromosome vy, the
set of nodes S; with all nodes adjacent to node i
output data: number of paths L, , the flow £¥and the cost o
of each path, ic L;
step 0: number of paths /<0
step 1: If S1=¢, go to step 7; otherwise, /< [ +1, continue.
step 2: The implementation of path P/ growth is based on
procedure 2. Select the sink node a of path p/.
step 3: If the sink node a=m, continue; otherwise, perform
the set of nodes S; update as follows, return to step 1.

s, «s;,~{a}, Vi
step 4: Calculate the flow £ and the cost ¢/* of the path PF.
St e £ +minfu, |G, j)e B

clk « clk-l +chij(f1k _f}lil)
i=l j=1
step 5: Perform the flow capacity u; of each arc update.
Make a new flow capacity &;; as follows:
~ . . k
u;, < u, —mln{u,.j|(1,])e B}
step 6: If the flow capacity #;=0, perform the set of nodes
S; update which the node j adjacent to node i.
s; < 5,—{j}, (,))e Plk &‘7:';' =0
step 7: Output number of paths L; « [ -1, the flow f¥and
the cost ¢* of each path, ie L, .

B. Adaptive Evaluation Function

In order to evaluate the fitness of each individual in the
GA approach for the MXF/MCF problem, we can design an
adaptive evaluation function based on the AWA [4]
(Gen-Cheng2000, pp.127-131). The fitness values of all
individuals are calculated according to this adaptive
evaluation function.

procedure 4: Adaptive Weight Approach

input data: chromosome v, k€ pop_size, number of paths

L; , the flow f,* and the cost ¢ of each path, ie L
output data: fitness value eval(vy), ke pop_size

step 1: Define two extreme points: the maximum extreme

point z* and the minimum extreme point z” in criteria
space as follows:

z+ - {zlmax, Z;nax} min min

z = {Zl s 23 }
where 2™, z,"", z;™" and z,”™" are the maximal
value and minimal value for objective 1 and
objective 2 in the current population. They are
defined as follows:

z™ =max{v! |ie L,, ke pop_size}

max

ZP™ =max{~c! |ie L,, ke pop_size}
z™ =min{y} |ie L,, ke pop _size}

min

z™ =min{~c/ |ie L,, ke pop_size}

step 2: The adaptive weight for objective 1 and objective 2
are calculated by the following equation:

1

w = max ___min
Zy Z
1
w, = max min
Z;, T4

step 3: Calculate the fitness value for each individual.
L , _
P AR BN D)

eval(v,) =

, Vke pop size
L, -

C. Pareto Optimal Solutions

In the case of multiple objectives, there does not
necessarily exist a solution that is best with respect to all
objectives because of incommensurability and conflict
among objectives. A solution may be best in one objective
but worst in other objectives. Therefore, there usually exist a
set of solutions for the multiple-objective case which cannot
simply be compared with each other. For such solutions,
called Pareto optimal solutions, no improvement in any
objective function is possible without sacrificing at least one
of the other objective functions. In this paper, Pareto
solutions are identified at each generation.

procedure 5: identify Pareto solutions
input data: chromosome v, kepop_size, number of paths
L, the flow f,-k and the cost c,~k of each path, ie L,
output data: number of Pareto solutions J, Pareto solution
e~ P72} ¢ €E
step 0: initialize i«-0, j«-0.
step 1: i i +1, if >L,, go to step 7; otherwise, continue.
step 2: switchetrue, j« j +1, if j<J, continue; otherwise,
return to step 1.
step 3: If ﬁ" =zj1 or c,-k =zj2, let switch<false, continue;
otherwise, go to step 5.
step 4: If ¢! <zj2 orff >zj1, update the set of Pareto
solutions E and J, go to step 6.

E e—E\e].
Je«J-1
switch « true

step 5: If fE >z,-1 and ¢} <zj2, update the set of Pareto
solutions E and J, go to step 6; otherwise, return to

step 2.
E < E\e,
Je—J-1

step 6: If switch=true, adding newly generated Pareto
solution as follows, return to step 1.

JeJ+1

e, « ()0 £, ¢}
E«Ele,

176



step 7: Output number of Pareto solutions J, Pareto step 3: Identify the set of Pareto solutions based on
solution e={v,, p, z,', 2/} ¢; € E procedure 5 (identify Pareto solutions).

step 4: Produce offspring with crossover and mutation,
decode the offspring and calculate the fitness

D Genetic Operators

Crossover: Here the position-based crossover operator values for each decoded offspring.
proposed by PMX (Partial Mapped Crossover) [2] step 5: The current generation gen<—gen+1, update the set
{ren-Cheng97, pp.119-125) was adopted. It can be viewed as of Pareto solutions, select the next generation
an extension of two-point crossover for binary string to using the roulette wheel method.
permutation representation. It uses a special repairing step 6: If the maximal generation is reached gen>genmax,
procedure to resolve the illegitimacy caused by the simple stop; otherwise, return to step 4.

two-point crossover as shown in Figure 1.

step 1 : select the substring at random IV. NUMERICAL EXAMPLES
| substring selected

: nn A. Example ]

The first numerical example, presented by T. Munakata &
D.J. Hashier [1], was adopted. The problem comprises 25
nodes and 49 arcs. It is given as shown in Figure 3.

Figure 3: Illustration of Example 1
The parameters for the proposed GA approach are set as
follows:
Population size: pop_size =20
Crossover probability:  p=0.20
Mutation probability: pu=0.02
Maximum generation:  maxgen =1000
|:Ltye)«:hamging points Table 1 gives out the all Pareto optimal solutions. Figures 4

Figure 1: Illustration of the PMX operator.
Mutation: The swap mutation operator was used here, in
which two positions are selected at random and their contents
ire swapped as shown in Figure 2.

parent: | 1 I 7 ﬁ"| 3 | 4l6]s | 8 | give out the ideal points and all Pareto optimal solutions.
Table 1: The Pareto optimal solutions of Example 1

oﬂypring:'l‘7l6‘3|4l2_l$|8|

Figure 2: Illustration of the swap mutation operator. 4 300 30 2470 2 7703
Selection: The roulette wheel approach (2], a type of 5 345 3 2786 73 8382
fitness-proportional selection, was adopted. 8 600 38 2926 75 9762
10 696 40 3046 78 11799

E. Overall Procedure for the priority-based GA
12 993 5] 3274 80 13147
step 0: Set genetic parameters and read in the data of a 15 1001 47 1674 8 14531
given instance. 18 1226 52 4074 8 17115
step 1: Generate the initial population based on procedure | 2 1568 s 4830 &7 17941
(priority-based encoding). 21 1629 59 5406 88 19254
step 2: Decode the chromosomes into paths based on 2 1833 6 6575 . 19333
procedure 3 (overall paths growth), calculate the 2% 178 . 145 % 20007

fitness values for each decoded individual based
on procedure 4 (Adaptive Weight Approach).
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Figure 4: The Pareto optimal solutions of Example 1

B. Example 2

The second numerical Example, presented by T. Munakata
& D.J. Hashier [1], was adopted. The problem comprises 25
nodes and 56 arcs. It is given as shown in Figure 5.

Figure 5: Illustration of Example 2
The parameters for the proposed GA approach are set as

follows:
Population size:
Crossover probability:
Mutation probability:
Maximum generation:

pop_size =20
pc=0.20
pr=0.02
maxgen =1000

Table 2 gives out the all Pareto optimal solutions. Figures
6 give out the ideal points and all Pareto optimal solutions.
Table 2: The Pareto optimal solutions of Example 2

A

2 52 32 1633
8 248 34 1909
10 340 36 1937
15 495 38 2077
18 692 40 2485
19 1012 41 2581
20 (R3S 43 2731
21 1220 47 3080
25 1292 49 3302
26 1406 51 3551
27 1457 52 3739
28 1475

54 3872 73 6944
55 3990 74 7192
58 4146 75 7402
61 4671 76 7532
63 5153 78 7847
65 5463 80 9228
66 5704 82 10395
67 6323 83 12508
68 6422 85 12610
7t 6537 86 1315t
72 6748 9t 16752

ideal point: z,=91, 2,=16752
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Figure 6: The Pareto optimal solutions of Example 2

V. CONCLUSION

In this paper presented, a GA approach used a
priority-based chromosome for solving the MXF/MCF
problem. Priority-based chromosome is also easy to verify
that any permutation of the encoding corresponds to the paths,
so that most existing genetic operators can easily be applied
to the encoding. Also, any path has a corresponding
encoding; therefore, any point in solution space is accessible
for genetic search. This paper also combines an adaptive
evaluation function based on the AWA. The fitness values of
all individuals are calculated according to this adaptive
evaluation function. In each generation, the set of Pareto
solutions is updated by deleting all dominated solutions and
adding all newly generated Pareto solutions.

Computer simulations show the several
experiments by using several network optimization problems,
and show the effectiveness of the proposed method.

numerical
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