• Title/Summary/Keyword: microwave cavity

Search Result 98, Processing Time 0.03 seconds

A Study on the Numerical Analysis of Reentrant Cavity Resonator by Mode Matching Method and Orthogonality (모드결합법과 모드직교성에 의한 요철형 공진기의 공진주파수 계산)

  • 이승무;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 1987
  • In this paper, resonance frequencies of a reentrant cavity are computed by the mode matching method and the mode orthogonality. The reentrant cavity is composed of a coaxial cable and a cylindrical waveguide, so that resonance frequencies of the resonator can be varied by adjusting the length of the inner conductor of a coaxial cable. The result can be applied to numerous microwave devices such as klystron, wavemeter and resonant circuits of a amplifier and to the measurement of dielectric parameters.

  • PDF

Measurement of Effective Linewidth for Ca-Zr Substituted YIG (Ca-Zr치환 YIG의 유효 선폭 측정)

  • 김약연;한진우;한기평;김덕준;이상석;최태구
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.1
    • /
    • pp.22-29
    • /
    • 2000
  • The effective linewidth was measured using the conventional cavity perturbation method at 9.43 GHz in room temperature for Ca-Zr substituted yttrium iron garnet plate. The experimental set-up consists of the network analyzer, the electromagnet and the cylimdrical TE001 cavity. Measurement was performed in the static magnetic field perpendicular to the sample plane. The real and imaginary parts of diagonal component of the microwave susceptibility tensor are obtained from the resonance frequency and the quality factor Q of the cavity. Variations of the effective linewidth was qualitatively explained with the spin wave scattering theory.

  • PDF

Serial Flow Microwave Thermal Process System for Liquid Foods

  • Kim, Young-Jin;Lim, Seok-Won;Chun, Jae-Kun
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.446-449
    • /
    • 2005
  • Two single-magnetron heating systems (SM-HS), each with a helical glass heat exchanger and a cylindrical cavity, were combined to make a two-magnetron-in-series heating system (2MS-HS) in order to increase the heating capacity. A comparison using water showed that the heating performance of the 2MS-HS was increased by two-fold as compared to that of the SM-HS, resulting in energy saving of 7.0% in 2MS-HS. Pasteurization test of 2MS-HS conducted with model food (LB broth contaminated with Bacillus subtilis) showed two-fold higher treatment capacity compared to SM-HS. Relationships between outlet temperature of the processed food, flow rate, and residence time in the 2MS-HS were established for water. Optimum pasteurization capacity was 17 s, $73^{\circ}C$, at flow rate of 280 ml/min. The 2MS-HS could be applied to the small-scale pasteurization of liquid food.

Microwave Breakdown and High-Power Handling Capability of Circular Waveguide Cavity Filter (원통형 도파관 캐비티 필터의 마이크로파 방전과 고전력 취급 능력)

  • Lee, Sun-Ik;Kim, Joong-Pyo;Lim, Won-Gyu;Kim, Sang-Goo;Jang, Jin-Baek
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.80-85
    • /
    • 2017
  • In this paper, a mircrowave breakdown of X-band circular waveguide cavity filter, which occurred during ground test, was introduced, and electro-magnetic field simulation results to identify a root cause, and the analysis of possibility of its occurrence on orbit operation were presented. Filter modeling for simulation was conducted with a commercial tool (FEST3D), and electric fields inside the filter were monitored at the input of 1 W continuous wave. In our observation, strong electric field intensities were monitored on the tuning screws especially at the input of band-edge frequencies. The threshold power levels for the breakdown were also estimated and compared with the input power levels actually injected to the filter. From this estimation, we could figure out that the power exceeding the breakdown threshold was injected to the filter so that strong electric fields were generated and temperature increased high, and this became a root cause of the electrical short. Our further analysis showed that this kind of microwave breakdown is not likely to occur on orbit operation, and multipactor is expected not to occur at the input of band-edge frequencies. As a measure to prevent the microwave breakdown, we suggested to avoid the injection of band-edge frequencies and inject lower power levels to the filter.

A simple Q measurement method of a lossy coupled cavity resonator (손실결합 공동공진기의 간편한 Q 측정 방법)

  • Han, Dae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.1015-1020
    • /
    • 2018
  • The cavity resonator is one of the widely used components in the microwave applications. The unloaded Q, the resonant frequency, and the coupling factor are basic parameters of a cavity. A simple unloaded Q factor measurement procedure of a cavity is proposed in a lossy coupling. The equivalent circuit of a cavity with coupling loss at near the resonant frequency is presented. The coupling loss resistance was found by the measurement of a cavity impedance. The cavity impedance compensated coupling loss was redrawn on the Smith Chart. The loaded Q and coupling factor were obtained based on the compensated impedance locus and then the unloaded Q factor was calculated. To verify the proposed procedure, the cavity with lossless coupling was measured. The two measurement results in the lossy and lossless coupling agree well. The results confirm the proposed procedure is valid.

A Study on Properties of a Near-Field Microwave Microscope Using a Waveguide Resonator (도파관 공진기를 이용한 마이크로파 근접장 현미경의 특성에 관한 연구)

  • Kim, Hyun;Kim, Song-Hui;Kim, Joo-Young;Lee, Kie-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.16-24
    • /
    • 2008
  • Near-field scanning microwave microscope (NSMM) has been used to characterize the electromagnetic properties of samples based on a cavity perturbation technique. We used a NSMM using a waveguide cavity to couple a metallic probe tip as a point like evanescent field emitter. We explained the quality of our NSMM system by applying the cavity perturbation theory. First, to make a shape perturbation, we inserted linear and loop probes in the waveguide resonator. To check up electric and magnetic field distribution inside the waveguide resonator by shape perturbation, we confirmed the field distribution by using a HFSS simulation. Second, to make material perturbation, we located a dielectric sample in front of the probe tip and measured reflection coefficient $(S_{11})$. We found that the resonance frequency$(f_r)$ was changed linearly as the dielectric constant of resonator$({\varepsilon}_r)$ increased when ${\Delta}{\varepsilon}\;and\;{\Delta}{\mu}$ were small.

Changes in Chemical Components of Milk during Microwave HTST Pasteurization (마이크로파 고온단시간 살균시 우유의 화학적 성분 변화)

  • Kim, Suk-Shin
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1518-1522
    • /
    • 1999
  • This work was to determine the quality changes of milk with respect to the chemical components when HTST pasteurized by microwave energy. Raw milk was HTST pasteurized $(at\;72^{\circ}C\;for\;15\;sec)$ by three methods; by heating in a stainless steel tube immersed in a hot water bath (MP0), by heating in a microwave cavity to a desired temperature and then holding in a hot water bath (MP1) and by both heating and holding in a microwave cavity (MP2). There were no significant differences in pH and titratable acidity before and after pasteurization and among the different pasteurization methods. MP1 or MP2 showed better retention or less destruction than MP0 with respect to vitamin A, vitamin $B_1$, ascorbic acid and lysine content. The higher retention of nutrients of the MP1 or MP2 supports the possibility of using microwave energy for the pasteurization of milk and other fluid food products.

  • PDF

Microwave sintering of Fly Ash substituted body (석탄회가 첨가된 점토의 마이크로파를 이용한 소결)

  • 김석범;한정환;김유택
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.513-517
    • /
    • 1998
  • Fly ashes mixed with clay as 70:30 weight percent were sintered by microwave energy and a 2.45 Ghz kitchen model microwave oven was used. Samples were sintered at $1,150^{\circ}C$ and kept at that temperature up to 50 minutes by 10 minutes intervals. Microstructures were taken by Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometry (EDS) analysis of a raw fly ash was taken. X-ray diffraction analysis was done, and compressive strengths and apparent densities were measured. Pore sizes of the samples became smaller as time passed by, but compressive strengths and apparent densities did not change much. Numerical analysis on the microwave heated system was carried out in order to figure out heat transfer phenomena in the cavity.

  • PDF

Microwave Sintering of Gd-Doped CeO2 Powder (Gd-Doped CeO2 분말의 마이크로파 소결)

  • Kim, Young-Goun;Kim, Seuk-Buom
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.182-187
    • /
    • 2007
  • 10 mol% $Gd_{2}O_{3}-CeO_{2}$ powder was sintered by microwave in a 2.45 GHz multimode cavity to develop a dense electrolyte layer for intermediate temperature solid oxide fuel cells (IT-SOFCs). Samples were sintered from $1100^{\circ}C$ upto $1500^{\circ}C$ by $50^{\circ}C$ difference and kept for 10 min and 30 min at the maximum temperature respectively. Theoretical density of the sample sintered at $1200^{\circ}C$ for 10 min was 95.4% and increased gradually upto 99% in the sample sintered at $1500^{\circ}C$ for 30 min. All of sintered samples showed very fine microstructures and the maximum average grain size of the sintered sample at $1500^{\circ}C$ for 30 min was $(0.87{\pm}0.42){\mu}m$. Ionic conductvity of the samples were measured by DC 4 probe method.

Cut-off Probe Frequency Spectrum의 물리적 해석

  • Yu, Sin-Jae;Kim, Dae-Ung;Kim, Jeong-Hyeong;Seong, Dae-Jin;Sin, Yong-Hyeon;Na, Byeong-Geun;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.200-200
    • /
    • 2011
  • Although the cut-off probe, a precise measurement method for the electron density, is widely used in the industry, the physics on the wave spectrum of the cut-off is not understood yet, only cut-off point frequency containing the information of electron density has been analyzed well. This paper analyzes the microwave frequency spectrum of the cut-off probe to see the physics behind using both microwave field simulation (CST Microwave Studio) and simplified circuit simulation. The result shows that the circuit model well reproduces the cut-off wave spectrum especially in the low frequency regime where the wavelength of the driving frequency is larger than the characteristic length and reveals the physics of transmission characteristics with frequency as resonances between vacuum, plasma and sheath. Furthermore, by controlling the time domain in solver of the microwave simulator, the cut-off like transmission peaks above the cut-off frequency which has been believed as cavity effect is verified as chamber geometry effect. The result of this paper can be used as the basis for the improvement of cut-off probe.

  • PDF