DOI QR코드

DOI QR Code

Microwave Sintering of Gd-Doped CeO2 Powder

Gd-Doped CeO2 분말의 마이크로파 소결

  • Kim, Young-Goun (Department of Materials Science and Engineering, Gyeonggi University) ;
  • Kim, Seuk-Buom (Department of Materials Science and Engineering, Gyeonggi University)
  • Published : 2007.03.31

Abstract

10 mol% $Gd_{2}O_{3}-CeO_{2}$ powder was sintered by microwave in a 2.45 GHz multimode cavity to develop a dense electrolyte layer for intermediate temperature solid oxide fuel cells (IT-SOFCs). Samples were sintered from $1100^{\circ}C$ upto $1500^{\circ}C$ by $50^{\circ}C$ difference and kept for 10 min and 30 min at the maximum temperature respectively. Theoretical density of the sample sintered at $1200^{\circ}C$ for 10 min was 95.4% and increased gradually upto 99% in the sample sintered at $1500^{\circ}C$ for 30 min. All of sintered samples showed very fine microstructures and the maximum average grain size of the sintered sample at $1500^{\circ}C$ for 30 min was $(0.87{\pm}0.42){\mu}m$. Ionic conductvity of the samples were measured by DC 4 probe method.

Keywords

References

  1. O. Yamamoto, 'Solid Oxide Fuel Cell: Fundamental Aspects and Prospects,' Electrochimica Acta., 45 2423-35 (2000) https://doi.org/10.1016/S0013-4686(00)00330-3
  2. E. I. Tiffee, A. Weber, and D. Herbstritt, 'Materials and Technologies for SOFC-Components,' J. Eur. Ceram. Soc., 21 1805-11 (2001) https://doi.org/10.1016/S0955-2219(01)00120-0
  3. N. Q. Minh and T. Takahashi, 'Science and Technology of Ceramic Fuel Cell,' pp. 1-14, Elsevier Science, Amsterdam, 1995
  4. B. C. H. Steele, 'Science and Technology of Zirconia:, vol, V, pp. 713, J. Am. Ceram. Soc., Columbus (1993)
  5. T. Tsai, E. Perry, and S. Barnett, 'Low-Temperature Solid Oxide Fuel Cells Utilizing Thin Bilayer Electrolyte,' J. Electrochem. Soc., 144 130-32 (1997) https://doi.org/10.1149/1.1837635
  6. P. K. Srivastava, T. Quach, Y. Y. Duan, R. Donelson, S. P. Jiang, F. T. Ciacch, and S. P. S. Badwal, 'Electrode Supported Solid Oxide Fuel Cells: Electrolyte Films Prepared by DC Magnetron Sputtering,' Solid State Ionics, 99 311-19 (1997) https://doi.org/10.1016/S0167-2738(97)00248-8
  7. K. Huang, M. Feng, and J. B. Goodenough, 'Synthesis and Electrical Properties of Dense $Ce_{0.9}Gd_{0.1}O_{1.95}$ Ceramics,' J. Am. Ceram. Soc., 81 357-62 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02341.x
  8. T. T. Sai and S. A. Barnett, 'Bias Sputter Deposition of Dense Yttria-Stabilized Zirconia Films on Porous Substrates,' J. Electrochem. Soc., 142 3084-87 (1995) https://doi.org/10.1149/1.2048692
  9. T. S. Zhang, J. Ma, L. B. Kong, P. Hing, and J. A. Kilner, 'Reparation and Mechanical Properties of Dense $Ce_{0.8}Gd_{0.2}O_{2-\delta} $ Ceramics,' Solid State Ionics, 167 191-96 (2004) https://doi.org/10.1016/j.ssi.2003.11.025
  10. K. Higashi, K. Sonoda, H. Ono, S. Sameshima, and Y. Horata, 'Synthesis and Sintering of Rare-Earth-Doped Ceria Powder by Oxalate Coprecipitation Method,' J. Mater. Res., 14 957-67 (1999) https://doi.org/10.1557/JMR.1999.0127
  11. K. Yamashita, K. V. Ramanujachary, and M. Greenblatt, 'Hydrothermal Synthesis and Low Temperature Conduction Properties of Substituted Ceria Ceramics,' Solid State Ionics, 81 53-60 (1995) https://doi.org/10.1016/0167-2738(95)99031-H
  12. C. Keinlogel and L. J. Gauckler, 'Sintering and Properties of Nanosized Ceria Solid Solutions,' Solid State Ionics, 135 567-73 (2000) https://doi.org/10.1016/S0167-2738(00)00437-9
  13. C. Keinlogel and L. J. Gauckler, 'Sintering of Nanocrystalline $CeO_2 $Ceramics,' Adv. Mater., 13 1081-85 (2001) https://doi.org/10.1002/1521-4095(200107)13:14<1081::AID-ADMA1081>3.0.CO;2-D
  14. D. P. Fagg, J. C. C. Abrantes, D. Perez-Coll, P. Nunez, V. V. Kharton, and J. R. Frade, 'The Effect of Cobalt Oxide Sintering Aid on Electronic Transport in $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ Elec-trolyte,' Electrochim. Acta, 48 1023-29 (2003) https://doi.org/10.1016/S0013-4686(02)00816-2
  15. S. H. Park and H. I. Yoo, 'Defect-Chemical Role of Mn in Gd-Doped $CeO_2$,' Solid State Ionics, 176 1485-90 (2005) https://doi.org/10.1016/j.ssi.2005.03.015
  16. H. Inaba, T. Nakajima, and H. Tagawa, 'Sintering Behavior of Ceria and Gadolinia-Doped Ceria,' Solid Sate Ionics, 106 263-68 (1998) https://doi.org/10.1016/S0167-2738(97)00496-7
  17. W. H. Sutton, 'Microwave Processing of Ceramic Materials,' Am. Ceram. Soc. Bull., 68 376-86 (1989) https://doi.org/10.1111/j.1151-2916.1985.tb10146.x
  18. J. Samuels and J. R. Brandon, 'Effect of Composition on the Enhanced Microwave Sintering of Alumina-Based Ceramic Composites,' J. Mater. Sci., 27 3259-65 (1992) https://doi.org/10.1007/BF01116022
  19. S. Das and T. R. Curlee, 'Microwave Sintering of Ceramics: Can We Save Energy?,' Am. Ceram. Soc. Bull., 66 1093-94 (1987)
  20. T. S. Zhang, P. Hing, H. Huang, and J. A. Kilner, 'Ionic Conductivity in $CeO_2-Gd_2O_3$ System $(0.05{\leq}Gd{\leq}0.4)$ Prepared by Oxalate Coprecipitation,' Solid State Ionics, 148 567-73 (2002) https://doi.org/10.1016/S0167-2738(02)00121-2
  21. I. D. Han, K. Y. Lim, and S. M Sim, 'Preparation and Sintering Characteristics of Gd-Doped $CeO_2$ Powder by Oxalate Co-Precipition(in Korean),' J. Kor. Ceram. Soc., 43 666-72 (2006) https://doi.org/10.4191/KCERS.2006.43.10.666
  22. J. Ma, T. S. Zhang, L. B. Kong, P. Hing, and S. H. Chan, $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ Ceramics Derived from Commercial Submicron- Sized $CeO_2$and $Gd_2O_3$ Powders for Use as Electrolytes in Solid Oxide Fuel Cells,' J. Power Sources, 132 71-6 (2004) https://doi.org/10.1016/j.jpowsour.2003.12.029
  23. K. Huang, R. S. Tichy, and J. B. Goodenough, 'Superior Perovskite Oxide-Ion Conductor Strontium-and Magnesium- doped $LaGaO_3$ II, AC Impedance Spectroscopy,' J. Am. Ceram. Soc., 81 2576-80 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02663.x
  24. H. N. Kim, H. J. Park, and G. M. Choi, 'The Effect of Alumina Addition on the Electrical Conductivity of Gd-Doped Ceria,' J. Electroceramics, 17 793-98 (2006) https://doi.org/10.1007/s10832-006-7000-2
  25. T. Mori, J. Drennan. J. H. Lee, H. G. Li, and T. Ikegami, 'Oxide Ionic Conductivity and Microstructures of Sm-or La-Doped $CeO_2$-Based Systems,' Solid State Ionics, 154 461-66 (2002) https://doi.org/10.1016/S0167-2738(02)00483-6

Cited by

  1. Susceptor-Assisted Enhanced Microwave Processing of Ceramics - A Review pp.1547-6561, 2017, https://doi.org/10.1080/10408436.2016.1192987