Browse > Article

A Study on Properties of a Near-Field Microwave Microscope Using a Waveguide Resonator  

Kim, Hyun (Department of Physics and Program of Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Kim, Song-Hui (Department of Physics and Program of Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Kim, Joo-Young (Department of Physics and Program of Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Lee, Kie-Jin (Department of Physics and Program of Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Publication Information
Abstract
Near-field scanning microwave microscope (NSMM) has been used to characterize the electromagnetic properties of samples based on a cavity perturbation technique. We used a NSMM using a waveguide cavity to couple a metallic probe tip as a point like evanescent field emitter. We explained the quality of our NSMM system by applying the cavity perturbation theory. First, to make a shape perturbation, we inserted linear and loop probes in the waveguide resonator. To check up electric and magnetic field distribution inside the waveguide resonator by shape perturbation, we confirmed the field distribution by using a HFSS simulation. Second, to make material perturbation, we located a dielectric sample in front of the probe tip and measured reflection coefficient $(S_{11})$. We found that the resonance frequency$(f_r)$ was changed linearly as the dielectric constant of resonator$({\varepsilon}_r)$ increased when ${\Delta}{\varepsilon}\;and\;{\Delta}{\mu}$ were small.
Keywords
Near-Field Scanning Microwave Microscope (NSMM); Waveguide; Cavity Perturbation; $(S_{11})$;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 E. A. Ash and G. Nicholls, 'Super-resolution aperture scanning microscope,' Nature, Vol. 237, pp. 510-512, (1972)   DOI   ScienceOn
2 W. Park, J. Kim and K. Lee, 'Millimeter-wave scanning near-field microscope using a resonant waveguide probe,' Appl. Phys. Lett., Vol. 79, No. 16, pp. 2642-2644, (2001)   DOI   ScienceOn
3 Grant R. Fowles, Introduction to Modern Optics, Dover, NY, (1975)
4 M. Ohtsu, 'Near-field nano/atom optics and technology,' Springer-Verlag, Tokyo, (1998)
5 S. Kim, H. Yoo, A. Babajanyan, J. Kim and K. Lee, 'A study for a near-field microwave microscope using a tuning fork distance control system in liquid environment,' Journal of the Korean Society for Nondestructive Testing, Vol. 27, No. 4, pp. 339-347, (2007)   과학기술학회마을
6 H. Kitano, R. Matsuo, K. Miwa, A. Maeda, T. Takenobu, Y. Iwasa and T. Mitani, 'Evidence for insulating behavior in the electric conduction of $(NH_3)K_3C_{60}$ systems,' Phys. Rev. Lett., Vol. 88, No. 9, pp. 096401-096404, (2002)   DOI   ScienceOn
7 M. M. Mola, J. T. King, C. P. McRaven and S. Hill, 'Josephson plasma resonance in $k-(BEDT-TTF)_2Cu(NCS)_2$,' Phys. Rev. B., Vol. 62, No. 9, pp. 5965-5970, (2000)   DOI   ScienceOn
8 R. S. Aga, S. Yan, Y. Xie, S. Han and J. Z. Wu, 'Microwave surface resistance of $HgBa_2CaCu_2O_{6+\delta}$ thin films,' Appl. Phys. Lett. Vol. 76, No. 12, pp. 1606-1608, (2000)   DOI   ScienceOn
9 S. Hong, J. Kim, W. Park and K. Lee, 'Improved surface imaging with a near-field scanning microwave microscope using a tunable resonator,' Appl. Phys. Lett., Vol. 80, No. 3, pp. 524-526, (2002)   DOI   ScienceOn
10 D. M. Pozar, Microwave Engineering, Wiley, NY, (1990)
11 J. Kim, S. Kim, H. Yoo, J. Yang, H. Yoo, K. Yu, S. Kim and K. Lee, 'The study of near-field scanning microwave microscope for the nondestructive detection system,' Journal of the Korean Society for Nondestructive Testing, Vol. 24, No. 5, pp. 508-517, (2004)
12 J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, NY, (1998)
13 T. P. Budka, S. D. Waclawik and G. M. Rebeiz, 'A coaxial 0.5-18GHz near electric field measurement system for planar microwave circuits using integrated probes,' IEEE Trans. Microwave Theory & Tech., Vol. 44, No. 12(1), pp. 2174-2184, (1996)   DOI   ScienceOn
14 J. S. Hyde, R. R. Mett and J. R. Anderson, 'Cavities with axially uniform fields for use in electron paramagnetic resonance. III. re-entrant geometries,' Rev. Sci. Instrum., Vol. 73, No. 11, pp. 4003-4009, (2002)   DOI   ScienceOn
15 M. Tabib-Azar, D. Akinwande, G. Ponchak and S. R. Clair, 'Novel physical sensors using evanescent microwave probes,' Rev. Sci. Instrum., Vol. 70, No. 8, pp. 3381-3386, (1999)   DOI
16 J. D. Kokales, P. Fouriner, L. V. Mercaldo, V. V. Talanov, R. L. Greene and S. M. Anlage, 'Microwave electrodynamics of electron-doped cuprate superconductors,' Phys. Rev. Lett., Vol. 85, No. 17, pp. 3696-3699, (2000)   DOI   ScienceOn
17 David. K. Cheng, Field and Wave Electromagnetics, Prentice Hall, NY, (1989)
18 A. F. Lann, M. Abu-teir, M. Golosovsky amd D. Davidov, 'A cryogenic microwave scanning near-field probe: application to study of high-Tc superconductors,' Rev. Sci. Instrum., Vol. 70, No. 11, pp. 4348-4355 (1999)   DOI