A Study on Properties of a Near-Field Microwave Microscope Using a Waveguide Resonator

도파관 공진기를 이용한 마이크로파 근접장 현미경의 특성에 관한 연구

  • Kim, Hyun (Department of Physics and Program of Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Kim, Song-Hui (Department of Physics and Program of Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Kim, Joo-Young (Department of Physics and Program of Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Lee, Kie-Jin (Department of Physics and Program of Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • 김현 (서강대학교 물리학과 바이오융합 연구단) ;
  • 김송희 (서강대학교 물리학과 바이오융합 연구단) ;
  • 김주영 (서강대학교 물리학과 바이오융합 연구단) ;
  • 이기진 (서강대학교 물리학과 바이오융합 연구단)
  • Published : 2008.02.28

Abstract

Near-field scanning microwave microscope (NSMM) has been used to characterize the electromagnetic properties of samples based on a cavity perturbation technique. We used a NSMM using a waveguide cavity to couple a metallic probe tip as a point like evanescent field emitter. We explained the quality of our NSMM system by applying the cavity perturbation theory. First, to make a shape perturbation, we inserted linear and loop probes in the waveguide resonator. To check up electric and magnetic field distribution inside the waveguide resonator by shape perturbation, we confirmed the field distribution by using a HFSS simulation. Second, to make material perturbation, we located a dielectric sample in front of the probe tip and measured reflection coefficient $(S_{11})$. We found that the resonance frequency$(f_r)$ was changed linearly as the dielectric constant of resonator$({\varepsilon}_r)$ increased when ${\Delta}{\varepsilon}\;and\;{\Delta}{\mu}$ were small.

섭동이론인 형태 섭동과 물질 섭동을 적용하여 도파관 공진기를 사용한 마이크로파 근접장 현미경의 특성에 대해 연구하였다. 먼저, Ansoft사의 HFSS (high frequency structure simulator)를 사용하여 공진기 내부의 모드해석과 함께 공진기에서 선형 및 고리형 탐침에 대해 전력전달이 최대가 되고 탐침의 감도 향상을 기대할 수 있는 위치를 확인하였다. 더불어, 유전율이 서로 다른 유전체 시료 (teflon, glass, $Al_2Q_3,\;LaAlO_3,\;SrTiO_3$)에 대해 마이크로파 반사계수$(S_{11})$를 측정하였다. 측정결과로부터 유전율이 증가함에 따라 마이크로파 반사계수$(S_{11})$는 증가하고 공진주파수는 감소하였다. 이를 통해, 도파관 공진기를 이용한 마이크로파 근접장 현미경에서 선형 및 고리형 탐침의 위치에 따른 공진기의 감도 및 공진특성에 대해 알아보았다.

Keywords

References

  1. R. S. Aga, S. Yan, Y. Xie, S. Han and J. Z. Wu, 'Microwave surface resistance of $HgBa_2CaCu_2O_{6+\delta}$ thin films,' Appl. Phys. Lett. Vol. 76, No. 12, pp. 1606-1608, (2000) https://doi.org/10.1063/1.126110
  2. M. M. Mola, J. T. King, C. P. McRaven and S. Hill, 'Josephson plasma resonance in $k-(BEDT-TTF)_2Cu(NCS)_2$,' Phys. Rev. B., Vol. 62, No. 9, pp. 5965-5970, (2000) https://doi.org/10.1103/PhysRevB.62.5965
  3. H. Kitano, R. Matsuo, K. Miwa, A. Maeda, T. Takenobu, Y. Iwasa and T. Mitani, 'Evidence for insulating behavior in the electric conduction of $(NH_3)K_3C_{60}$ systems,' Phys. Rev. Lett., Vol. 88, No. 9, pp. 096401-096404, (2002) https://doi.org/10.1103/PhysRevLett.88.096401
  4. J. D. Kokales, P. Fouriner, L. V. Mercaldo, V. V. Talanov, R. L. Greene and S. M. Anlage, 'Microwave electrodynamics of electron-doped cuprate superconductors,' Phys. Rev. Lett., Vol. 85, No. 17, pp. 3696-3699, (2000) https://doi.org/10.1103/PhysRevLett.85.3696
  5. E. A. Ash and G. Nicholls, 'Super-resolution aperture scanning microscope,' Nature, Vol. 237, pp. 510-512, (1972) https://doi.org/10.1038/237510a0
  6. T. P. Budka, S. D. Waclawik and G. M. Rebeiz, 'A coaxial 0.5-18GHz near electric field measurement system for planar microwave circuits using integrated probes,' IEEE Trans. Microwave Theory & Tech., Vol. 44, No. 12(1), pp. 2174-2184, (1996) https://doi.org/10.1109/22.556445
  7. S. Hong, J. Kim, W. Park and K. Lee, 'Improved surface imaging with a near-field scanning microwave microscope using a tunable resonator,' Appl. Phys. Lett., Vol. 80, No. 3, pp. 524-526, (2002) https://doi.org/10.1063/1.1435068
  8. M. Tabib-Azar, D. Akinwande, G. Ponchak and S. R. Clair, 'Novel physical sensors using evanescent microwave probes,' Rev. Sci. Instrum., Vol. 70, No. 8, pp. 3381-3386, (1999) https://doi.org/10.1063/1.1149923
  9. W. Park, J. Kim and K. Lee, 'Millimeter-wave scanning near-field microscope using a resonant waveguide probe,' Appl. Phys. Lett., Vol. 79, No. 16, pp. 2642-2644, (2001) https://doi.org/10.1063/1.1409944
  10. Grant R. Fowles, Introduction to Modern Optics, Dover, NY, (1975)
  11. David. K. Cheng, Field and Wave Electromagnetics, Prentice Hall, NY, (1989)
  12. D. M. Pozar, Microwave Engineering, Wiley, NY, (1990)
  13. J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, NY, (1998)
  14. J. S. Hyde, R. R. Mett and J. R. Anderson, 'Cavities with axially uniform fields for use in electron paramagnetic resonance. III. re-entrant geometries,' Rev. Sci. Instrum., Vol. 73, No. 11, pp. 4003-4009, (2002) https://doi.org/10.1063/1.1510549
  15. M. Ohtsu, 'Near-field nano/atom optics and technology,' Springer-Verlag, Tokyo, (1998)
  16. A. F. Lann, M. Abu-teir, M. Golosovsky amd D. Davidov, 'A cryogenic microwave scanning near-field probe: application to study of high-Tc superconductors,' Rev. Sci. Instrum., Vol. 70, No. 11, pp. 4348-4355 (1999) https://doi.org/10.1063/1.1150078
  17. J. Kim, S. Kim, H. Yoo, J. Yang, H. Yoo, K. Yu, S. Kim and K. Lee, 'The study of near-field scanning microwave microscope for the nondestructive detection system,' Journal of the Korean Society for Nondestructive Testing, Vol. 24, No. 5, pp. 508-517, (2004)
  18. S. Kim, H. Yoo, A. Babajanyan, J. Kim and K. Lee, 'A study for a near-field microwave microscope using a tuning fork distance control system in liquid environment,' Journal of the Korean Society for Nondestructive Testing, Vol. 27, No. 4, pp. 339-347, (2007)