• 제목/요약/키워드: microstructure hardness

검색결과 1,339건 처리시간 0.026초

가열 롤에서 플라즈마 TiO2-NiCr 용사피막의 특성 (Characteristics of Plasma Sprayed TiO2-NiCr Conductive Heating Roll Coatings)

  • 강태구;진민석;고영봉;김태형;조상흠;박정식;김종철;박경채
    • Journal of Welding and Joining
    • /
    • 제25권4호
    • /
    • pp.28-34
    • /
    • 2007
  • The heating unit of direct heating method manufactured as the plasma spray coating of $TiO_2/NiCr$ conductive heating material on the surface of heating unit in order to improve the disadvantages of indirect heating method. $TiO_2$ and NiCr (80wt.%Ni-20wt.%Cr) that had the properties of conduction and heating was chosen for the conductive heating material. The compositions of the composite powders were studied $TiO_2-30wt.%NiCr\;and\;TiO_2-10wt.%NiCr$. As the heating temperature was increased, the hardness of heating layer was increased because of the fine microstructure and the decrease of porosity. The adhesion strength was decreased for coarsening and connection of voids in the insulation layer, and the electrical resistivity of heating layer was increased for fine crack formation and growth. In this study, the best efficient sprayed coatings with heating unit was concluded as the plasma sprayed $TiO_2-10wt.%NiCr$ coatings that was heat treated at $300^{\circ}C$.

보자력 및 잔류자화를 이용한 2.25Cr-1Mo강의 경년열화도 평가 - 미세조직적 접근 (Evaluation of Aging Degradation in 2.25Cr-1Mo Steel by Coercivity and Remanence Measurements - Microstructural Approach)

  • 변재원;권숙인
    • 비파괴검사학회지
    • /
    • 제22권1호
    • /
    • pp.65-73
    • /
    • 2002
  • 2.25Cr-1M 강이 $540^{\circ}C$에서 장시간 노출되었을 때 일어나는 미세조직 변화를 모사하기 위해 인공 열화를 실시하였으며 이에 대해 미세조직(탄환화물의 평균등가크기 및 단위면 개수), 기계적 성질 (인장강도 및 경도), 자기적 성질(보자력 및 잔류자화)을 측정하였다. 이들 결과를 비교함으로써 열화에 따른 자기적 성질의 변화와 미세조직 사이의 상관관계률 규명하였다. 탄화물을 그 형장에 따라 막대상, 구상, 침상으로 분류하였으며 침상의 탄화물은 열화 초반부에 급격히 소멸되는 경향을 보였다. 또한 보자력과 잔류자화는 열화 초반부에 급격히 감소한 후 점차 완만히 감소하는 경향을 보였다. 기계적 성질과 보자력 및 잔류자화 사이에는 선형적 상관관계가 존재하였다.

Fe-Cr계 금속 분말의 직접 레이저 용융을 통해 형성된 적층부 특성 분석 (Characterization of the Deposited Layer Obtained by Direct Laser Melting of Fe-Cr Based Metal Powder)

  • 장정환;주병돈;전찬후;문영훈
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.107-115
    • /
    • 2012
  • Direct laser melting (DLM) is a powder-based additive manufacturing process to produce parts by layer-by-layer laser melting. As the properties of the manufactured parts depend strongly on the deposited laser-melted bead, deposited layers obtained by the DLM process were characterized in this study. This investigation used a 200 W fiber laser to produce single-line beads under a variety of different energy distributions. In order to obtain a feasible range for the two main process parameters (i.e. laser power and scan rate), bead shapes of single track deposition were intensively investigated. The effects of the processing parameters, such as powder layer thickness and scan spacing, on geometries of the deposited layers have also been analyzed. As a result, minimum energy criteria that can achieve a complete melting have been suggested at the given powder layer thickness. The surface roughnesses of the deposited beads were strongly dependent on the overlap ratio of adjacent beads and on the energy distributions of laser power. Through microstructural analysis and hardness measurement, the morphological and mechanical properties of the deposited layers at various overlapped beads have also been characterized.

Superhard SiC Thin Films with a Microstructure of Nanocolumnar Crystalline Grains and an Amorphous Intergranular Phase

  • Lim, Kwan-Won;Sim, Yong-Sub;Huh, Joo-Youl;Park, Jong-Keuk;Lee, Wook-Seong;Baik, Young-Joon
    • Corrosion Science and Technology
    • /
    • 제18권5호
    • /
    • pp.206-211
    • /
    • 2019
  • Silicon carbide (SiC) thin films become superhard when they have microstructures of nanocolumnar crystalline grains (NCCG) with an intergranular amorphous SiC matrix. We investigated the role of ion bombardment and deposition temperature in forming the NCCG in SiC thin films. A direct-current (DC) unbalanced magnetron sputtering method was used with pure Ar as sputtering gas to deposit the SiC thin films at fixed target power of 200 W and chamber pressure of 0.4 Pa. The Ar ion bombardment of the deposited films was conducted by applying a negative DC bias voltage 0-100 V to the substrate during deposition. The deposition temperature was varied between room temperature and $450^{\circ}C$. Above a critical bias voltage of -80 V, the NCCG formed, whereas, below it, the SiC films were amorphous. Additionally, a minimum thermal energy (corresponding to a deposition temperature of $450^{\circ}C$ in this study) was required for the NCCG formation. Transmission electron microscopy, Raman spectroscopy, and glancing angle X-ray diffraction analysis (GAXRD) were conducted to probe the samples' structural characteristics. Of those methods, Raman spectroscopy was a particularly efficient non-destructive tool to analyze the formation of the SiC NCCG in the film, whereas GAXRD was insufficiently sensitive.

직접식 에너지 용착 공정을 활용한 축 보수 방법 및 활용 사례 연구 (A Study on the Method and Application of Shaft Repair using Directed Energy Deposition Process)

  • 이윤선;이민규;성지현;홍명표;손용;안석;정외철;이호진
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.1-10
    • /
    • 2021
  • Recently, the repair and recycling of damaged mechanical parts via metal additive manufacturing processes have been industrial points of interest. This is because the repair and recycling of damaged mechanical parts can reduce energy and resource consumption. The directed energy deposition(DED) process has various advantages such as the possibility of selective deposition, large building space, and a small heat-affected zone. Hence, it is a suitable process for repairing damaged mechanical parts. The shaft is a core component of various mechanical systems. Although there is a high demand for the repair of the shaft, it is difficult to repair with traditional welding processes because of the thermal deformation problem. The objective of this study is to propose a repair procedure for a damaged shaft using the DED process and discuss its applications. Three types of cases, including a small shaft with a damaged surface, a medium-size shaft with a worn bearing joint, and a large shaft with serious damage, were repaired using the proposed procedure. The microstructure and hardness were examined to discuss the characteristics of the repaired component. The efficiency of the repair of the damaged shaft is also discussed.

압출 출구 온도에 따른 Al 6061 합금의 표면 재결정층 두께 변화 및 기계적 특성 변화 (The Thickness of Recrystallization Layer and Mechanical Properties According to Extrusion Exit Temperature)

  • 김수빈;박태희;김현기;이상목;김희국
    • 소성∙가공
    • /
    • 제30권5호
    • /
    • pp.219-225
    • /
    • 2021
  • When extruding Al6061 alloys, deformation energy is deposited inside the extruded alloy depending on the deformation and the temperature of extrusion. This creates a Peripheral Coarse Grain (PCG) on the surface, where relatively more deformation energy. of the extruded alloy has been accumulated. Furthermore, since the deformation of materials continues while the materials recrystallize, it is important to examine the effect of deformation energy on dynamic recrystallization in the process of extruding Al alloys along with their microstructure. Prior studies explain the theory behind PCG growth though quantitative analysis on PCG growth of Al alloys during extrusion processes has not yet been addressed. This study aims to measure the generated PCG thickness which determines the correlation between extrusion outlet temperature and its effect on mechanical properties. Surface structure observations were performed using Optical Microscope (OM) and mechanical properties were evaluated through tensile strength and hardness measurement. Throughout this study, we endevoured to find the optimum condition of extrusion exit temperature of Al6061 and confirmed improved d reliability. This study describes the effect of the complex process variables such as exit temperature on the thickness of PCG layer for the Al6061 alloy using the 200 tons extrusion press. We therefore, discovered that the PCG layer thickness was 117 ㎛ at temperatures between 460 ℃ to 520 ℃.

8인치 직경의 304L 스테인리스강관의 부식특성에 미치는 제작공정의 영향 (Effect of Manufacturing Process on the Corrosion Properties of 304L Stainless Steel Pipe with 8-inch Diameter)

  • 김기태;허승영;장현영;김영식
    • Corrosion Science and Technology
    • /
    • 제17권6호
    • /
    • pp.279-286
    • /
    • 2018
  • Austenitic stainless steels used in nuclear power plants mainly use pipes made of seamless pipes, which depend on imports. The manufacturing process and high cost are some of the problems associated with seamless pipes. Therefore, in this study, the corrosion characteristics of the seamless pipe and the SAW pipe were assessed to determine the safety and reliability of the SAW pipe in a bid to replace the seamless pipe. Microstructure was analyzed using an optical microscope and the degree of hardness was measured using a Rockwell B scale. Intergranular corrosion resistance was evaluated by ASTM A262 Practice A, C, and E methods. The degree of sensitization was determined using a DL-EPR test. Anodic polarization test was performed in deaerated 1% NaCl solution at $30^{\circ}C$ and the U-bend method was used to evaluate the SCC resistance in 0.01 M $Na_2S_4O_6$ at $340^{\circ}C$ and 40% NaOH solution at $290^{\circ}C$. Weld metal of the SAW pipe specimen showed relatively high degree of sensitization and intergranular corrosion rate. However, annealing to SAW pipes improved the corrosion properties in comparison to that of the seamless pipe.

방전플라즈마소결로 제조된 나노결정 FeNiCrMoMnSiC 합금의 오스테나이트 안정성과 기계적 특성 (Austenite Stability and Mechanical Properties of Nanocrystalline FeNiCrMoMnSiC Alloy Fabricated by Spark Plasma Sintering)

  • 박정빈;전준협;서남혁;김광훈;손승배;이석재
    • 한국분말재료학회지
    • /
    • 제28권4호
    • /
    • pp.336-341
    • /
    • 2021
  • In this study, a nanocrystalline FeNiCrMoMnSiC alloy was fabricated, and its austenite stability, microstructure, and mechanical properties were investigated. A sintered FeNiCrMoMnSiC alloy sample with nanosized crystal was obtained by high-energy ball milling and spark plasma sintering. The sintering behavior was investigated by measuring the displacement according to the temperature of the sintered body. Through microstructural analysis, it was confirmed that a compact sintered body with few pores was produced, and cementite was formed. The stability of the austenite phase in the sintered samples was evaluated by X-ray diffraction analysis and electron backscatter diffraction. Results revealed a measured value of 51.6% and that the alloy had seven times more austenite stability than AISI 4340 wrought steel. The hardness of the sintered alloy was 60.4 HRC, which was up to 2.4 times higher than that of wrought steel.

STS 440C 마르텐사이트계 스테인리스 강의 열처리에 따른 미세조직, 기계적 특성 및 부식 거동 (Effect of Heat Treatment on Microstructure, Mechanical Property and Corrosion Behavior of STS 440C Martensitic Stainless Steel)

  • 김민구;이광민
    • 한국재료학회지
    • /
    • 제31권1호
    • /
    • pp.29-37
    • /
    • 2021
  • Martensitic stainless steel is commonly used in the medical implant instrument. The alloy has drawbacks in terms of strength and wear properties when applied to instruments with sharp parts. 440C STS alloy, with improved durability, is an alternative to replace 420 J2 STS. In the present study, the carbide precipitation, and mechanical and corrosion properties of STS 440C alloy are studied as a function of different heat treatments. The STS 440C alloy is first austenitized at different temperatures; this is immediately followed by oil quenching and sub-zero treatment. After sub-zero treatment, the alloy is tempered at low temperatures. The microstructures of the heat treated STS 440C alloy consist of martensite and retained austenite and carbides. Using EDX and SADP with a TEM, the precipitated carbides are identified as a Cr23C6 carbide with a size of 1 to 2 ㎛. The hardness of STS 440C alloy is improved by austenitization at 1,100 ℃ with sub-zero treatment and tempering at 200 ℃. The values of Ecorr and Icorr for STS 440C increase with austenitization temperature. Results can be explained by the dissolution of Cr-carbide and the increase in the retained austenite. Sub-zero treatment followed by tempering shows a little difference in the properties of potentiodynamic polarizations.

전기방전에 의한 Ti3Al의 합성 및 소결 특성 연구 (A Study on the Synthesis and Consolidation of Ti3Al by Electro-Discharge)

  • 장형순;조유정;강태주;김기범;이원희
    • 대한금속재료학회지
    • /
    • 제47권8호
    • /
    • pp.488-493
    • /
    • 2009
  • Direct syntheses of bulk $Ti_3Al$ via electro-discharge-sintering (EDS) of a stoichiometric elemental powder mixture were investigated. A capacitor bank of $450{\mu}F$ was charged with three input energies, 0.5, 1.0, and 1.5 kJ. The charged capacitor bank was then instantaneously discharged through 0.3 g of a Ti-25.0 at.%Al powder mixture for consolidation. Complete phase transformation occurred in less than $200{\mu}sec$ by the discharge and a bulk $Ti_3Al$ compact was obtained. Compared with consolidated samples fabricated by conventional methods such as high vacuum sintering and casting, the electro-discharge-sintered $Ti_3Al$ compact shows a very fine microstructure with a hardness value of 425 Hv. Electro-discharge-sintering under a $N_2$ atmosphere successfully modified the surface Ti oxide of the $Ti_3Al$ compact into Ti nitride, which concurred with the synthesis and consolidation of $Ti_3Al$. Complete conversion yielding a single phase $Ti_3Al$ is primarily dominated by the fast solid state diffusion reaction.