Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.1.29

Effect of Heat Treatment on Microstructure, Mechanical Property and Corrosion Behavior of STS 440C Martensitic Stainless Steel  

Kim, Mingu (School of Materials Science and Engineering School, Chonnam National University)
Lee, Kwangmin (School of Materials Science and Engineering School, Chonnam National University)
Publication Information
Korean Journal of Materials Research / v.31, no.1, 2021 , pp. 29-37 More about this Journal
Abstract
Martensitic stainless steel is commonly used in the medical implant instrument. The alloy has drawbacks in terms of strength and wear properties when applied to instruments with sharp parts. 440C STS alloy, with improved durability, is an alternative to replace 420 J2 STS. In the present study, the carbide precipitation, and mechanical and corrosion properties of STS 440C alloy are studied as a function of different heat treatments. The STS 440C alloy is first austenitized at different temperatures; this is immediately followed by oil quenching and sub-zero treatment. After sub-zero treatment, the alloy is tempered at low temperatures. The microstructures of the heat treated STS 440C alloy consist of martensite and retained austenite and carbides. Using EDX and SADP with a TEM, the precipitated carbides are identified as a Cr23C6 carbide with a size of 1 to 2 ㎛. The hardness of STS 440C alloy is improved by austenitization at 1,100 ℃ with sub-zero treatment and tempering at 200 ℃. The values of Ecorr and Icorr for STS 440C increase with austenitization temperature. Results can be explained by the dissolution of Cr-carbide and the increase in the retained austenite. Sub-zero treatment followed by tempering shows a little difference in the properties of potentiodynamic polarizations.
Keywords
STS 440C; martensitic stainless steel; austenitization; sub-zero treatment; tempering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. N. Isfahany, H. Saghafian and G. Borhani, J. Alloys Compd., 509, 3931 (2011).   DOI
2 T. Tsuchiyama, J. Tobata, T. Tao, N. Nakada and S. Takaki, Mater. Sci. Eng., A, 532, 585 (2012).   DOI
3 H. H. Lu, H. K. Guo, W. G. Zhang and W. Liang, Mater. Lett., 240, 275 (2019).   DOI
4 A. N. Isfahany, H. Saghafian and G. Borhani, J. Alloys Compd., 509, 3931 (2011).   DOI
5 M. Albertini, M. Herrero-Climent, P. Lazaro, J. V. Rios and F. J. Gil, Mater. Lett., 79, 163 (2012).   DOI
6 C. J. Scheuer, F. Possoli, P. C. Borges, R. P. Cardoso and S. F. Brunatto, Electrochim. Acta, 317, 70 (2019).   DOI
7 A. A. Salih, M. Z. Omar, S. Junaidi and Z. Sajuri, Aust. J. Basic Appl. Sci., 5, 867 (2011).
8 J. R. Yang, T. H. Yu and C. H. Wang, Mater. Sci. Eng. A, 438-440, 276 (2006).   DOI
9 C. T. Kwok, K. H. Lo, F. T. Cheng and H. C. Man, Surf. Coat. Technol., 166, 221 (2003).   DOI
10 S. H. Salleh, M. Z. Omar, J. Syarif, M. J. Ghazali, S. Abdullah and Z. Sajuri, Int. J. Mech. Mater. Eng., 4, 123 (2009).
11 M. A. Neri and R. Colas, Mater. Charact., 47, 283 (2001).   DOI
12 C. G. De Andres, G. Caruana and L. F. Alvarez, Mater. Sci. Eng., A, 241, 211 (1998).   DOI
13 Z. X. Xia, C. Zhang and Z. G. Yang, Mater. Sci. Eng., A, 528, 6764 (2011).   DOI
14 S. Y. Lu, K. F. Yao, Y. B. Chen, M. H. Wang, X. Liu and X. Ge, Electrochim. Acta, 165, 45 (2015).   DOI
15 A. F. Candelaria and C. E. Pinedo, J. Mater. Sci. Lett., 22, 1151 (2003).   DOI
16 A. Rajasekhar, G. Madhusudhan Reddy, T. Mohandas and V. S. R. Murti, Mater. Des., 30, 1612 (2009).   DOI
17 L. Ning, D. Zhonggang and H. Menggen, Mater. Sci. Technol., 7, 1057 (1991).   DOI
18 J. Y. Park and Y. S. Park, Mater. Sci. Eng., A, 448-451, 1131 (2007).   DOI
19 J. Y. Park and Y. S. Park, Corrosion, 62, 541 (2006).   DOI