DOI QR코드

DOI QR Code

Fe-Cr계 금속 분말의 직접 레이저 용융을 통해 형성된 적층부 특성 분석

Characterization of the Deposited Layer Obtained by Direct Laser Melting of Fe-Cr Based Metal Powder

  • 장정환 (부산대학교 기계공학부/정밀정형 및 금형가공 연구소) ;
  • 주병돈 (부산대학교 기계공학부/정밀정형 및 금형가공 연구소) ;
  • 전찬후 (부산대학교 기계공학부/정밀정형 및 금형가공 연구소) ;
  • 문영훈 (부산대학교 기계공학부/정밀정형 및 금형가공 연구소)
  • Jang, Jeong-Hwan (School of Mechanical Engineering/Engineering Research Center for Net Shape and Die Manufacturing, Pusan National University) ;
  • Joo, Byeong-Don (School of Mechanical Engineering/Engineering Research Center for Net Shape and Die Manufacturing, Pusan National University) ;
  • Jeon, Chan-Hu (School of Mechanical Engineering/Engineering Research Center for Net Shape and Die Manufacturing, Pusan National University) ;
  • Moon, Young-Hoon (School of Mechanical Engineering/Engineering Research Center for Net Shape and Die Manufacturing, Pusan National University)
  • 투고 : 2011.08.08
  • 발행 : 2012.02.25

초록

Direct laser melting (DLM) is a powder-based additive manufacturing process to produce parts by layer-by-layer laser melting. As the properties of the manufactured parts depend strongly on the deposited laser-melted bead, deposited layers obtained by the DLM process were characterized in this study. This investigation used a 200 W fiber laser to produce single-line beads under a variety of different energy distributions. In order to obtain a feasible range for the two main process parameters (i.e. laser power and scan rate), bead shapes of single track deposition were intensively investigated. The effects of the processing parameters, such as powder layer thickness and scan spacing, on geometries of the deposited layers have also been analyzed. As a result, minimum energy criteria that can achieve a complete melting have been suggested at the given powder layer thickness. The surface roughnesses of the deposited beads were strongly dependent on the overlap ratio of adjacent beads and on the energy distributions of laser power. Through microstructural analysis and hardness measurement, the morphological and mechanical properties of the deposited layers at various overlapped beads have also been characterized.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. K. Osakada and M. Shiomi, Int. J. Mach. Tool. Manu. 46, 1188 (2006). https://doi.org/10.1016/j.ijmachtools.2006.01.024
  2. K. A. Mumtaz, P. Erasenthiran, and N. Hopkinson, J. Mater. Process. Technol. 195, 77 (2008). https://doi.org/10.1016/j.jmatprotec.2007.04.117
  3. I. Yadroitsev, I. Shishkovsky, P. Bertrand, and I. Smurov, Appl. Surf. Sci. 255, 5523 (2009). https://doi.org/10.1016/j.apsusc.2008.07.154
  4. D. K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Nishida, T. Nakamura, and T. Kokubo, Acta Biomater. 7, 1398 (2011). https://doi.org/10.1016/j.actbio.2010.09.034
  5. L. Hao, S. Dadbakhsh, O. Seaman, and M. Felstead, J. Mater. Process. Technol. 209, 5793 (2009). https://doi.org/10.1016/j.jmatprotec.2009.06.012
  6. I. Yadroitsev and I. Smurov, Physics Procedia 12, 264 (2011). https://doi.org/10.1016/j.phpro.2011.03.034
  7. E. Louvis, P. Fox, and C. J. Sutcliffe, J. Mater. Process. Technol. 211, 275 (2011). https://doi.org/10.1016/j.jmatprotec.2010.09.019
  8. A. Simchi and H. Pohl, Mater. Eng., A 359, 119 (2003). https://doi.org/10.1016/S0921-5093(03)00341-1
  9. M. Badrossamay and T. H. C. Childs, Int. J. Mach. Tool. Manu. 47, 779 (2007). https://doi.org/10.1016/j.ijmachtools.2006.09.013
  10. D. Gu and Y. Shen, Appl. Surf. Sci. 255, 1180 (2008).
  11. H. J. Jang, K. S. Yun, and C. J. Park, Korean J. Met. Mater. 48, 741 (2010).
  12. Y. H. Kim, A. Y. Jang, D. H. Kang, D. E. Ko, Y. T. Shin, and H.W. Lee, Korean J. Met. Mater. 48, 1090 (2010).
  13. R. K. S. Raman and R. K. Gupta, Corros. Sci. 51, 316 (2009). https://doi.org/10.1016/j.corsci.2008.10.020
  14. T. W. Kim, S. H. Jo, I. Y. Ko, J. M. Doh, J. K. Yoon, and I. J. Shon, Korean J. Met. Mater. 48, 981 (2010). https://doi.org/10.3365/KJMM.2010.48.11.981
  15. J. H. Jang, B. D. Joo, S. M. Mun, M. Y. Sung, and Y. H. Moon, Met. Mater. Int. 17, 167 (2011). https://doi.org/10.1007/s12540-011-0223-z
  16. E. Capello and B. Previtali, J. Mater. Process. Technol. 174, 223 (2006). https://doi.org/10.1016/j.jmatprotec.2006.01.005
  17. H. F. Bauer and A. Buchholz, Forsch. Ingenieurwes. 63, 339 (1997).
  18. I. Yadroitsev and I. Smurov, Physics Procedia 5, 551 (2010). https://doi.org/10.1016/j.phpro.2010.08.083
  19. J. Grum and J. M. Slabe, Appl. Surf. Sci. 208, 424 (2003).
  20. F. Huang, Z. Jiang, X. Liu, J. Lian, and L. Chen, J. Mater. Process. Technol. 209, 4970 (2009). https://doi.org/10.1016/j.jmatprotec.2009.01.019
  21. J. Song, Q. Deng, C. Chen, D. Hu, and Y. Li, Appl. Surf. Sci. 252, 7934 (2006). https://doi.org/10.1016/j.apsusc.2005.10.025