DOI QR코드

DOI QR Code

방전플라즈마소결로 제조된 나노결정 FeNiCrMoMnSiC 합금의 오스테나이트 안정성과 기계적 특성

Austenite Stability and Mechanical Properties of Nanocrystalline FeNiCrMoMnSiC Alloy Fabricated by Spark Plasma Sintering

  • 박정빈 (전북대학교 신소재공학부) ;
  • 전준협 (전북대학교 신소재공학부) ;
  • 서남혁 (전북대학교 신소재공학부) ;
  • 김광훈 (전북대학교 신소재공학부) ;
  • 손승배 (전북대학교 신소재공학부) ;
  • 이석재 (전북대학교 신소재공학부)
  • Park, Jungbin (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Jeon, Junhyub (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Seo, Namhyuk (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Kim, Gwanghun (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Son, Seung Bae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Lee, Seok-Jae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
  • 투고 : 2021.08.05
  • 심사 : 2021.08.24
  • 발행 : 2021.08.28

초록

In this study, a nanocrystalline FeNiCrMoMnSiC alloy was fabricated, and its austenite stability, microstructure, and mechanical properties were investigated. A sintered FeNiCrMoMnSiC alloy sample with nanosized crystal was obtained by high-energy ball milling and spark plasma sintering. The sintering behavior was investigated by measuring the displacement according to the temperature of the sintered body. Through microstructural analysis, it was confirmed that a compact sintered body with few pores was produced, and cementite was formed. The stability of the austenite phase in the sintered samples was evaluated by X-ray diffraction analysis and electron backscatter diffraction. Results revealed a measured value of 51.6% and that the alloy had seven times more austenite stability than AISI 4340 wrought steel. The hardness of the sintered alloy was 60.4 HRC, which was up to 2.4 times higher than that of wrought steel.

키워드

과제정보

This work was supported by the Technology Innovation Program (20011879) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea).

참고문헌

  1. W. S. Lee and T. T. Su: J. Mater. Process. Technol., 87 (1999) 198. https://doi.org/10.1016/S0924-0136(98)00351-3
  2. Y. Tomita: Metall. Trans. A, 22A (1991) 1093. https://doi.org/10.1007/BF02661103
  3. R. L. McDaniels, S. A. White, K. Liaw, L. Chen, M. H. McCay and P. K. Liaw: Metall. Trans. A, 485 (2008) 500.
  4. G. Frommeyer, U. Brux and P. Neumann: ISIJ Int., 43 (2003) 438.
  5. D. S. Park, S. J. Oh, I. J. Shon and S. J. Lee: Arch. Metall. Mater., 63 (2018) 1479.
  6. S. G. Choi, J. H. Jeon, N. H. Seo, Y. H. Moon, I. J. Shon and S. J. Lee: Arch. Metall. Mater., 65 (2020) 1001.
  7. C. N. Sastry, K. H. Khan and W. E. Wood: Metall. Trans. A, 13A (1982) 676.
  8. R. O. Ritchie and R. M. Horn: Metall. Trans. A, 9A (1978) 331.
  9. S. J. Lee, S. Lee and B. C. De Cooman: Int. J. Mater. Res., 104 (2013) 423. https://doi.org/10.3139/146.110882
  10. J. Jeon, S. Choi, N. Seo, Y. H. Moon, I. J. Shon and S. J. Lee: Arch. Metall. Mater., 65 (2020) 1249.
  11. N. Seo, J. Jeon, G. Kim, J. Park, S. B. Son and S. J. Lee: J. Korean Powder Metall. Inst., 27 (2020) 373. https://doi.org/10.4150/KPMI.2020.27.5.373
  12. G. Kim, J. Jeon, N. Seo, S Choi, M. S. Oh, S. B. Son and S. J. Lee: Arch. Metall. Mater., 66 (2021) 759.
  13. S. J. Oh, J. Jeon, I. J. Shon and S. J. Lee: J. Korean Powder Metall. Inst., 26 (2019) 389. https://doi.org/10.4150/KPMI.2019.26.5.389
  14. S. J. Oh, D. Park, K. Kim, I. J. Shon and S. J. Lee: Mater. Sci. Eng. A, 725 (2018) 382. https://doi.org/10.1016/j.msea.2018.04.051
  15. G. Kim, J. Jeon, N. Seo, J. Park, S. B. Son and S. J. Lee: J. Korean Powder Metall. Inst., 28 (2021) 246. https://doi.org/10.4150/KPMI.2021.28.3.246
  16. G. Delaizir, G. Bernard-Granger, J. Monnier, R. Grodzki, O. Kim-Hak, P.-D. Szkutnik, M. Soulier, S. Saunier, D. Goeuriot, O. Rouleau, J. Simon, C. Godart and C. Navone: Mater. Res. Bull., 47 (2012) 1954.
  17. V. Mihalache, I. Mercioniu, A. Velea and P. Palade: Powder Technol., 347 (2019) 103. https://doi.org/10.1016/j.powtec.2019.02.006
  18. C. B. Wei, X. Y. Song, J. Fu, X. M. Liu, Y. Gao, H. B. Wang and S. X. Zhao: Mater. Sci. Eng. A, 552 (2012) 427. https://doi.org/10.1016/j.msea.2012.05.065
  19. K. Chen, X. Zhang, H. Wang, L. Zhang, J. Zhu, F. Yang and L. An: J. Am. Ceram. Soc., 91 (2008) 2475.
  20. B. L. Averbach and M. Cohen: Trans. AIME, 176 (1948) 401.
  21. G. K. Williamson and W. H. Hall: Acta Metall., 1 (1953) 22. https://doi.org/10.1016/0001-6160(53)90006-6
  22. K. Oh-ishi, H. W. Zhang, T. Ohkubo and K. Hono: Mater. Sci. Eng. A, 456 (2007) 20. https://doi.org/10.1016/j.msea.2006.12.002
  23. H. W. Zhang, R. Gopalan, T. Mukai and K. Hono: Scr. Mater., 53 (2005) 863. https://doi.org/10.1016/j.scriptamat.2005.05.039
  24. C. Zheng, L. Li, W. Yang and Z. Sun: Mater. Sci. Eng. A, 599 (2014) 16. https://doi.org/10.1016/j.msea.2014.01.037
  25. M. M. Bilal, K. Yaqoob, M. H. Zahid, U. H. Ehsan, W. H. Tanveer, A. Wadood and B. Ahmed: J. Mater. Res. Technol., 8 (2019) 5194. https://doi.org/10.1016/j.jmrt.2019.08.042
  26. S. Zhirafar, A. Rezaeian and M. Pugh: J. Mater. Process. Technol., 186 (2007) 298. https://doi.org/10.1016/j.jmatprotec.2006.12.046
  27. P. Phetlam and V. Uthaisangsuk: Mater. Des., 82 (2015) 189. https://doi.org/10.1016/j.matdes.2015.05.068
  28. N. Niazi, S. Nisar and A. Shah: Int. J. Mater. Sci. Eng., 5 (2014) 6.
  29. M. Houssny-Emam and M. N. Bassim: Mater. Sci. Eng., 61 (1983) 79. https://doi.org/10.1016/0025-5416(83)90128-3
  30. I. Polyzois and N. Bassim: Mater. Sci. Eng. A, 631 (2015) 18. https://doi.org/10.1016/j.msea.2015.02.008
  31. S. J. Lee and Y. K. Lee: Mater. Des., 29 (2008) 1840. https://doi.org/10.1016/j.matdes.2008.03.009