• Title/Summary/Keyword: microglial activity

Search Result 75, Processing Time 0.033 seconds

Inhibitory Effects of Coptis japonica Alkaloids on the LPS-Induced Activation of BV2 Microglial Cells

  • Jeon, Se-Jin;Kwon, Kyung-Ja;Shin, Sun-Mi;Lee, Sung-Hoon;Rhee, So-Young;Han, Seol-Heui;Lee, Jong-Min;Kim, Han-Young;Cheong, Jae-Hoon;Ryu, Jong-Hoon;Min, Byung-Sun;Ko, Kwang-Ho;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.70-78
    • /
    • 2009
  • Coptis japonica (C. japonica) is a perennial medicinal plant that has anti-inflammatory activity. C. japonica contains numerous biologically active alkaloids including berberine, palmatine, epi-berberine, and coptisine. The most well-known anti-inflammatory principal in C. japonica is berberine. For example, berberine has been implicated in the inhibition of iNOS induction by cytokines in microglial cells. However, the efficacies of other alkaloids components on microglial activation were not investigated yet. In this study, we investigated the effects of three alkaloids (palmatine, epi-berberine and coptisine) from C. japonica on lipopolysaccharide (LPS)-induced microglial activation. BV2 microglial cells were immunostimulated with LPS and then the production of several inflammatory mediators such as nitric oxide (NO), reactive oxygen species (ROS) and matrix metalloproteinase-9 (MMP-9) were examined as well as the phosphorylation status of Erk1/2 mitogen activated protein kinase (MAPK). Palmatine and to a lesser extent epi-berberine and coptisine, significantly reduced the release of NO, which was mediated by the inhibition of LPS-stimulated mRNA and protein induction of inducible nitric oxide synthase (iNOS) from BV2 microglia. In addition to NO, palmatine inhibited MMP-9 enzymatic activity and mRNA induction by LPS. Palmatine also inhibited the increase in the LPS-induced MMP-9 promoter activity determined by MMP-9 promoter luciferase reporter assay. LPS stimulation increased Erk1/2 phosphorylation in BV2 cells and these alkaloids inhibited the LPS-induced phosphorylation of Erk1/2. The anti-inflammatory effect of palmatine in LPS-stimulated microglia may suggest the potential use of the alkaloids in the modulation of neuroinflammatory responses, which might be important in the pathophysiological events of several neurological diseases including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD) and stroke.

Effect of Cirsii Japonici Herba on LPS-induced Inflammation in Mouse BV2 Microglial cells (대계(大薊)가 LPS로 유도된 Mouse BV2 Microglial cells의 염증반응에 미치는 영향)

  • Kim, Young-Sun;Lee, Seoung-Geun;Lee, Key-Sang
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.1048-1060
    • /
    • 2008
  • Cirsii Japonici Herba(CJ) is a wild perennial herb found in many areas of Korea as well as China and Japan, which has been used to treat bleeding and inflammation. Silibinin is the main flavonoid extracted from milk thistle (Cirsii Japonici Herba). It exhibits potent antioxidant activity and anti-inflammatory effect. In this study, the effect of CJ and silibinin extract on lipopolysaccharide-induced inflammation was investigated using MTS assay, RT-PCR, western blot, and nitric oxide detection on mouse BV2 microglial cell lines. In the present results, CJ and silibinin extract suppressed nitric oxide production by inhibiting the lipopolysaccharide-stimulated enhancement of COX-2 and iNOS gene expression in BV2 cells. Moreover, CJ and silibinin also repressed some lipopolysaccharide-induced signaling molecules. Importantly, catalase-induced COX-2 and iNOS expression needed activations of $NF-{\kappa}B$, PI3K/Akt, and MAPK, which were important for the transcriptional up-regulation of COX-2 and iNOS. CJ and silibinin interaction on BV2 cells down-regulated $NF-{\kappa}B$-dependent proinflammatory cytokine (IL-2,IL-6) expression. They are involved in the regulation of inflammatory responses. These data shows that CJ and silibinin exerts anti-inflammatory and analgesic effects, probably by suppression of COX-2 and iNOS synthase expression in BV2 microglial cells.

  • PDF

Anti-inflammatory Activity of 1-docosanoyl Cafferate Isolated from Rhus verniciflua in LPS-stimulated BV2 Microglial Cells

  • Lee, Jae-Won;Cheong, Il-Young;Kim, Hae-Sung;Lee, Jae-Jun;Lee, Yong-Suk;Kwon, Yong-Soo;Kim, Myong-Jo;Lee, Hee-Jae;Kim, Sung-Soo;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • Although various derivatives of caffeic acid have been reported to possess a wide variety of biological activities such as protection of neuronal cells against excitotoxicity, the biological activity of 1-docosanoyl cafferate (DC) has not been examined. The objective of the present study was to evaluate the anti-inflammatory effects of DC, isolated from the stem bark of Rhus verniciflua, on lipopoly-saccharide (LPS)-stimulated BV2 microglial cells. Pretreatment of cells with DC significantly attenuated LPS-induced NO production, and mRNA and protein expression of iNOS in a concentration-dependent manner. DC also significantly suppressed LPS-induced release of cytokines such as TNF-${\alpha}$ and IL-$1{\beta}$. Consistent with the decrease in cytokine release, DC dose-dependently and significantly attenuated LPS-induced mRNA expression of these cytokines. Furthermore, DC significantly suppressed LPS-induced degradation of IKB, which retains NF-kB in the cytoplasm. Therefore, nuclear translocation of NF-kB induced by LPS stimulation was significantly suppressed with DC pretreatment. Taken together, the present study suggests that DC exerts its anti-inflammatory activity through the suppression of NF-kB translocation to the nucleus.

Green Tea Polyphenol Epigallocatechine Gallate (EGCG) Prevented LPS-induced BV-2 Micoglial Cell Activation (BV-2 미세아교세포의 활성에 대한 녹차 유래 폴리페놀 EGCG의 억제 효과)

  • Park, Euteum;Chun, Hong Sung
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.640-645
    • /
    • 2016
  • Microglial cells are immediately activated in the central nervous system in response to a variety of neuronal environmental changes, such as injuries or inflammation. In addition to the modulation of the intrinsic immune response, a key role of microglial cells is the phagocytosis of dying cells and cellular debris. In this study, the inhibitory effects of epigallocatechine-3-gallate (EGCG), a most abundant and active polyphenol component of green tea, on lipopolysaccharide (LPS)-induced microglial activation are determined. EGCG dose dependently suppressed LPS-induced nitric oxide production and the expression of inducible nitric oxide synthase (iNOS) in BV-2 microglial cells. EGCG are potent LPS-induced inhibitors of several pro-inflammatory cytokine expressions, such as TNF-α and IL-1β, in microglial cells. Furthermore, EGCG generally inhibits the induction of LPS-mediated microglial activation and potently inhibits the phagocytosis of LPS-stimulated BV2 microglia. Although the conditioned media from LPS-stimulated BV-2 cells caused the SN4741 cell death, that from the conditioned media of EGCG pretreated BV-2 cells did not diminish the viability of SN4741 cells. These results suggest EGCG, a green tea polyphenol, could be a promising available molecule for the modulation of harmful microglial activation.

Improvement of Menopausal Signs by Isoflavones Derived from Sophorae fructus in Ovariectomized Female Rats and the Antioxidant Potentials in BV2 Cells

  • Joo, Seong-Soo;Kwon, Suk-Hyung;Hwang, Kwang-Woo;Lee, Do-Ik
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.566-572
    • /
    • 2005
  • The aim of this study was to determine if the isoflavones from Sophorae fructus (SISO) have potential clinical benefit in hormone replacement therapy (HRT) for the treat ment of menopausal signs, such as the levels of total cholesterol (TC), high density lipoprotein (HDL), low density lipoprotein (LDL) and follicle stimulating hormone (FSH). An additional aim was to present the potential antioxidant effect of SISO in a microglial cell line. For the animal model, the ovaries were removed from adult rats and the indicators of menopause were measured at the pre- and post-administration time points. Although no statistically significant correlation was found, SISO tended to decrease the TC level (p=0.15) and the FSH level (p=0.36), but to increase the HDL level (p=0.303).SISO (< 5${\mu}g$/mL) also exerted antioxidant activity on BV-2 microglial cells by inhibiting lipopolysaccharide-induced nitric oxide. This cytoprotective effect was confirmed by trypan blue staining, which was used to test for cellular damage from H$_2O_2$. In conclusion, this study highlights the anti-menopausal and antioxidant effect of SISO in an ovariectomized rat model, as well as in microglial cells, and provides new clinical targets for the screening of phytoestrogens as potential candidates for HRT in menopausal women.

The Anti-Inflammatory Activity of Eucommia ulmoides Oliv. Bark. Involves NF-κB Suppression and Nrf2-Dependent HO-1 Induction in BV-2 Microglial Cells

  • Kwon, Seung-Hwan;Ma, Shi-Xun;Hwang, Ji-Young;Ko, Yong-Hyun;Seo, Ji-Yeon;Lee, Bo-Ram;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.268-282
    • /
    • 2016
  • In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase $kinase-3{\beta}$ ($GSK-3{\beta}$), and their downstream transcription factor, nuclear factor-kappa B ($NF-{\kappa}B$). EUE also blocked the nuclear translocation of $NF-{\kappa}B$ and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and $PGE_2$ production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and $GSK-3{\beta}$, consequently suppressing $NF-{\kappa}B$ activation and inducing Nrf2-dependent HO-1 activation.

Comparison of the Effects of Matrix Metalloproteinase Inhibitors on TNF-α Release from Activated Microglia and TNF-α Converting Enzyme Activity

  • Lee, Eun-Jung;Moon, Pyong-Gon;Baek, Moon-Chang;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.5
    • /
    • pp.414-419
    • /
    • 2014
  • Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that regulate cell-matrix composition and are also involved in processing various bioactive molecules such as cell-surface receptors, chemokines, and cytokines. Our group recently reported that MMP-3, -8, and -9 are upregulated during microglial activation and play a role as proinflammatory mediators (Lee et al., 2010, 2014). In particular, we demonstrated that MMP-8 has tumor necrosis factor alpha (TNF-${\alpha}$)-converting enzyme (TACE) activity by cleaving the prodomain of TNF-${\alpha}$ and that inhibition of MMP-8 inhibits TACE activity. The present study was undertaken to compare the effect of MMP-8 inhibitor (M8I) with those of inhibitors of other MMPs, such as MMP-3 (NNGH) or MMP-9 (M9I), in their regulation of TNF-${\alpha}$ activity. We found that the MMP inhibitors suppressed TNF-${\alpha}$ secretion from lipopolysaccharide (LPS)-stimulated BV2 microglial cells in an order of efficacy: M8I>NNGH>M9I. In addition, MMP inhibitors suppressed the activity of recombinant TACE protein in the same efficacy order as that of TNF-${\alpha}$ inhibition (M8I>NNGH>M9I), proving a direct correlation between TACE activity and TNF-${\alpha}$ secretion. A subsequent pro-TNF-${\alpha}$ cleavage assay revealed that both MMP-3 and MMP-9 cleave a prodomain of TNF-${\alpha}$, suggesting that MMP-3 and MMP-9 also have TACE activity. However, the number and position of cleavage sites varied between MMP-3, -8, and -9. Collectively, the concurrent inhibition of MMP and TACE by NNGH, M8I, or M9I may contribute to their strong anti-inflammatory and neuroprotective effects.

Inhibitory Activity of Nitric Oxide Synthase and Peroxynitrite Scavenging Activity of Extracts of Perilla frutescens (들깨 잎 추출물의 Nitric Oxide Synthase 저해활성 및 Peroxynitrite 소거활성)

  • Kim, Jae-Yeon;Kim, Ji-Sun;Jung, Chan-Sik;Jin, Chang-Bae;Ryu, Jae-Ha
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.2 s.149
    • /
    • pp.170-175
    • /
    • 2007
  • Activated microglia by neuronal injury or inflammatory stimulation overproduce nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) such as superoxide anion, resulting in neurodegenerative diseases. The toxic peroxynitrite (ONOO$^-$), the reaction product of NO and superoxide anion further contributes to oxidative neurotoxicity. We tried to evaluate the effects of two kinds of varieties of Perilla frutescens var japnica Hara on the NO production in lipopolysaccharide (LPS)-activated microglia. The perilla cultivars of Namcheondeulkkae (NC) and Boradeulkkae (BR) were developed by pure line from the local variety and by a cross between 'deulkkae' and 'chajogi', respectively. Spirit, hexane, chloroform and butanol fractions of the leaves of NC and BR inhibited the production of NO in LPS-activated microglia. The fractions of BR showed stronger activity than NC and the spirit extracts was the most potent in both cultivars. The solvent fractions of BR suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells. Moreover, the extracts of NC and BR showed the activity of peroxynitrite scavenging in cell free bioassay system. These results imply that Namcheondeulkkae and Boradeulkkae might have neuroprotective activity through the inhibition of NO production by activated microglial cells and peroxynitrite scavenging activity.

Anti-Oxidative and Anti-Neuroinflammatory Effect of Ethanol Extracts from Walnuts's (Juglans regia L.) Shell

  • Kang, Hyun
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.365-371
    • /
    • 2018
  • In this study, antioxidant and anti-neuroinflammatory of ethanol extracts from walnuts's (Juglans regia L.) shell were investigated in vitro. Radical-scavenging activities of the walnuts's shell ethanol extracts (WSE) were examined by using ABTS radicals and ${\alpha},{\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) radicals assay. In the ABTS and DPPH radical scavenging activity, $RC_{50}$ of WSE were measured as 15.74 and $40.13{\mu}g/mL$, respectively. Also, to evaluate the anti-neuroinflammatory effects of WSE in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. The production of proinflammatory cytokines NO were examined by LPS in BV-2 cell. BV-2 cells activated with LPS were treated with various doses (10, 25, 50, $100{\mu}g/mL$) of WSE. Supernatants were analyzed for the production of NO using Griess reagent. WSE up to $10{\mu}g/mL$ still required to inhibit NO induced by LPS. These results showed that walnuts's (Juglans regia L.) shell can be used as an easily accessible source of natural anti-neuroinflammatory and natural antioxidants.

The Effects of DoDamTanghapChongMungTang(Daotantanghecongmingtang) on LPS induced-Microglia and Memory Deficit Mice Model (도담탕합총명탕(導痰湯合聰明湯)이 LPS로 처리된 microglia 및 기억력 감퇴 생쥐 모델에 미치는 영향)

  • Park, Dae-Myung;Lee, Sang-Ryong;Jung, In-Chul
    • Journal of Oriental Neuropsychiatry
    • /
    • v.22 no.2
    • /
    • pp.107-128
    • /
    • 2011
  • Objectives : This experiment was designed to investigate the efficacy of DDTCMT hot water extract & ultra-fine powder on Alzheimer's Disease Model. Methods : The effects of the DDTCMT hot water extract on expression of IL-$1{\beta}$, IL-6, TNF-${\alpha}$, COX-2, NOS-II, IL-10, IL-1 receptor antagonist mRNA and production of IL-$1{\beta}$, IL-6, TNF-${\alpha}$ in BV2 microglial cell line treated by lipopolysacchaide(LPS) were investigated. Expression of NO, ROS in BV2 microglial cell line treated by LPS and AChE activity in PC-12 cell treated by NGF were investigated. anti-AChE was observed through Western blot analysis. The effects of the DDTCMT hot water extract & ultra-fine powder on the behavior of the memory deficit mice induced by scopolamine were investigated. Results : 1. The DDTCMT hot water extract significantly decreased the production of mIL-6, mNOS-II, mTNF-${\alpha}$, and increased the production of mIL-10, mIL-1 receptor antagonist. 2. The DDTCMT hot water extract significantly suppressed the production of IL-$1{\beta}$, IL-6, TNF-${\alpha}$ in BV2 microglial cell line treated by LPS. 3. The DDTCMT hot water extract significantly suppressed the NO and ROS production in BV2 microglial cell line treated by LPS. 4. The DDTCMT hot water extract groups showed inhibition of AChE activity in NGF treated PC-12 cell line. 5. The DDTCMT hot water extract suppressed anti-AChE expression in NGF treated PC-12 cell line was observed by Western blot analysis. 6. The DDTCMT hot water extract & ultra-fine powder groups showed significantly inhibitory effect on the scopolamine -induced impairment of memory in the experiment of Morris water maze. Conclusions : These results suggest that the DDTCMT hot water extract & ultra-fine powder may be effective for the prevention and treatment of Alzheimer's disease.