Browse > Article
http://dx.doi.org/10.4062/biomolther.2014.099

Comparison of the Effects of Matrix Metalloproteinase Inhibitors on TNF-α Release from Activated Microglia and TNF-α Converting Enzyme Activity  

Lee, Eun-Jung (Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University Medical School)
Moon, Pyong-Gon (Department of Molecular Medicine, Kyongbuk National University)
Baek, Moon-Chang (Department of Molecular Medicine, Kyongbuk National University)
Kim, Hee-Sun (Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University Medical School)
Publication Information
Biomolecules & Therapeutics / v.22, no.5, 2014 , pp. 414-419 More about this Journal
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that regulate cell-matrix composition and are also involved in processing various bioactive molecules such as cell-surface receptors, chemokines, and cytokines. Our group recently reported that MMP-3, -8, and -9 are upregulated during microglial activation and play a role as proinflammatory mediators (Lee et al., 2010, 2014). In particular, we demonstrated that MMP-8 has tumor necrosis factor alpha (TNF-${\alpha}$)-converting enzyme (TACE) activity by cleaving the prodomain of TNF-${\alpha}$ and that inhibition of MMP-8 inhibits TACE activity. The present study was undertaken to compare the effect of MMP-8 inhibitor (M8I) with those of inhibitors of other MMPs, such as MMP-3 (NNGH) or MMP-9 (M9I), in their regulation of TNF-${\alpha}$ activity. We found that the MMP inhibitors suppressed TNF-${\alpha}$ secretion from lipopolysaccharide (LPS)-stimulated BV2 microglial cells in an order of efficacy: M8I>NNGH>M9I. In addition, MMP inhibitors suppressed the activity of recombinant TACE protein in the same efficacy order as that of TNF-${\alpha}$ inhibition (M8I>NNGH>M9I), proving a direct correlation between TACE activity and TNF-${\alpha}$ secretion. A subsequent pro-TNF-${\alpha}$ cleavage assay revealed that both MMP-3 and MMP-9 cleave a prodomain of TNF-${\alpha}$, suggesting that MMP-3 and MMP-9 also have TACE activity. However, the number and position of cleavage sites varied between MMP-3, -8, and -9. Collectively, the concurrent inhibition of MMP and TACE by NNGH, M8I, or M9I may contribute to their strong anti-inflammatory and neuroprotective effects.
Keywords
Microglia; Inflammation; MMP inhibitor; TNF-${\alpha}$; TACE;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bocchini, V., Mazzolla, R., Barluzzi, R., Blasi, E., Sick, P. and Kettenmann, H. (1992) An immortalized cell line expresses properties of activated microglial cells. J. Neurosci. Res. 31, 616-621.   DOI   ScienceOn
2 Dev, R., Srivastava, P. K., Iyer, J. P., Dastidar, S. G. and Ray, A. (2010) Therapeutic potential of matrix metalloprotease inhibitors in neuropathic pain. Expert Opin. Investig. Drugs 19, 455-468.   DOI
3 Gearing, A. J., Beckett, P., Christodoulou, M., Churchill, M., Clements, J.,M., Crimmin, M., Davidson, A. H., Drummond, A. H., Galloway, W. A., Gilbert, R., Gordon, J. L., Leber, T. M., Mangan, M., Miller, K., Nayee, P., Owen, K., Patel, S., Thomasv W., Wells, G., Wood, L. M. and Woolley, K. (1995) Matrix metalloproteinases and processing of pro-TNF-alpha. J. Leukoc. Biol. 57, 774-777.   DOI
4 Hu, J., Van den, Steen P. E., Sang, Q. X. A. and Opdenakker, G. (2007) Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat. Rev. Drug Dicsov. 6, 480-498.   DOI   ScienceOn
5 Javaid, M. A., Abdallah, M. N., Ahmed, A. S. and Sheikh, Z. (2013) Matrix metalloproteinases and their pathological upregulation in multiple sclerosis: an overview. Acta Neurol. Belg. 113, 381-390.   DOI
6 Kataoka, H. (2009) EGFR ligands and their signaling scissors, ADAMs, as new molecular targets for anticancer treatments. J. Dermatol. Sci. 56, 148-153.   DOI
7 Lee, E. J., Han, J. E., Woo, M. S., Shin, J. A., Park, E. M., Kang, J. L., Moon, P. G., Baek, M. C., Son, W. S., Ko, Y. T., Choi, J. W. and Kim, H. S. (2014) Matrix metalloproteinase-8 plays a pivotal role in neuroinflammation by modulating TNF-${\alpha}$ activation. J. Immunol. 193, 2384-2393.   DOI
8 Li, N. G., Tang, Y. P., Duan, J. A. and Shi, Z. H. (2014) Matrix metalloproteinase inhibitors: a patent review (2011-2013). Expert Opin. Ther. Pat. 24, 1039-1052.   DOI
9 Mayhan, W. G. (2002) Cellular mechanisms by which tumor necrosis factor-a produces disruption of the blood-brain barrier. Brain Res. 927, 144-152.   DOI   ScienceOn
10 McCoy, M. and Tansey, M. G. (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J. Neuroinflammation 5, 45.   DOI   ScienceOn
11 Minond, D., Cudic, M., Bionda, N., Giulianotti, M., Maida, L., Houghten, R. A. and Fields, G. B. (2012) Discovery of novel inhibitors of a disintegrin and metalloprotease 17 (ADAM17) using glycosylated and non-glycosylated substrates. J. Biol. Chem. 287, 36473-36487.   DOI   ScienceOn
12 Morancho, A., Rosell, A., Garcia-Bonilla L. and Montaner J. (2010) Matrix metalloproteinase and stroke infarct size: role for anti-inflammatory treatment. Ann. N. Y. Acad. Sci. 1207, 123-133.   DOI
13 Moss, M. L., Jin, S. L., Milla, M. E., Bickett, D. M., Burkhart, W., Carter, H. L., Chen, W. J., Clay, W. C., Didsbury, J. R., Hassler, D., Hoffman, C. R., Kost, T. A., Lambert, M. H., Leesnitzer, M. A., McCauley, P., McGeehan, G., Mitchell, J., Moyer, M., Pahel, G., Rocque, W., Overton, L. K., Schoenen, F., Seaton, T., Su, J. L. and Becherer, J. D. (1997) Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 385, 733-736   DOI
14 Rosenberg, G. A. (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 8, 205-216.   DOI
15 Tian, L., Ma, L., Kaarela, T. and Li, Z. (2012) Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases. J. Neuroinflammation 9, 155.   DOI
16 Aggarwal, B. B. (2003) Signaling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 3, 745-756.   DOI   ScienceOn
17 Verma, R. P. and Hansch, C. (2007) Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q)SARs. Bioorg. Med. Chem. 15, 2223-2268   DOI
18 Verslegers, M., Lemmens, K., Hove, I. V. and Moons, L. (2013) Matrix metalloproteinase-2 and-9 as promising benefactors in development, plasticity and repair of the nervous system. Prog. Neurobiol. 105, 60-78.   DOI   ScienceOn
19 Woo, M. S., Park, J. S., Choi, I. Y., Kim, W. K. and Kim, H. S. (2008) Inhibition of MMP-3 or-9 suppresses lipopolysaccharide-induced expression of proinflammatory cytokines and iNOS in microglia. J. Neurochem 106, 770-780.   DOI   ScienceOn
20 Agrawal, S. M., Lau, L. and Yong V. W. (2008) MMPs in the central nervous system: where the good guys go bad. Semin. Cell Dev. Biol. 19, 42-51.   DOI   ScienceOn
21 Asai, M., Hattori, C., Szabo, B., Sasagawa, N., Maruyama, K., Tanuma, S. and Ishiura, S. (2003) Putative function of ADAM9, ADAM10, and ADAM17 as APP ${\alpha}$-secretase. Biochem. Biophys. Res. Commun. 301, 231-235.   DOI
22 Bahia M. S. and Silakari O. (2010) Tumor necrosis factor alpha converting enzyme: an encouraging target for various inflammatory disorders. Chem. Biol. Drug Des. 75, 415-443.   DOI
23 Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K. A., Gerhart M., Davis, R., Fitzner, J. N., Johnson, R. S., Paxton, R. J., March, C. J. and Cerretti, D. P. (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385, 729-733.   DOI   ScienceOn
24 Moss, M. L., Sklair-Tavron, L. and Nudelman, R. (2008) Drug insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 4, 300-309.
25 Candelario-Jalil, E., Yang, Y. and Rosenberg, G. A. (2009) Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 158, 983-994.   DOI   ScienceOn
26 Lee, E. J., Woo, M. S., Moon, P. G., Baek, M. C., Choi, I. Y., Kim, W. K., Junn, E. and Kim, H. S. (2010) ${\alpha}$-Synuclein activates microglia by inducing the expressions of matrix metalloproteases and the subsequent activation of protease-activated receptor-1. J. Immunol. 185, 615-623.   DOI