Browse > Article
http://dx.doi.org/10.4062/biomolther.2009.17.1.70

Inhibitory Effects of Coptis japonica Alkaloids on the LPS-Induced Activation of BV2 Microglial Cells  

Jeon, Se-Jin (Department of Pharmacology, College of Pharmacy and research Institute of Pharmaceutical Sciences, Seoul National University)
Kwon, Kyung-Ja (Center for Geriatric Neuroscience Research, IBST and School of Medicine, Konkuk University)
Shin, Sun-Mi (Department of Pharmacology, College of Pharmacy and research Institute of Pharmaceutical Sciences, Seoul National University)
Lee, Sung-Hoon (Department of Pharmacology, College of Pharmacy and research Institute of Pharmaceutical Sciences, Seoul National University)
Rhee, So-Young (Department of Pharmacology, College of Pharmacy and research Institute of Pharmaceutical Sciences, Seoul National University)
Han, Seol-Heui (Center for Geriatric Neuroscience Research, IBST and School of Medicine, Konkuk University)
Lee, Jong-Min (Center for Geriatric Neuroscience Research, IBST and School of Medicine, Konkuk University)
Kim, Han-Young (Center for Geriatric Neuroscience Research, IBST and School of Medicine, Konkuk University)
Cheong, Jae-Hoon (Department of Pharmacy, Sahmyook University)
Ryu, Jong-Hoon (Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University)
Min, Byung-Sun (College of Pharmacy, Catholic University of Daegu)
Ko, Kwang-Ho (Department of Pharmacology, College of Pharmacy and research Institute of Pharmaceutical Sciences, Seoul National University)
Shin, Chan-Young (Center for Geriatric Neuroscience Research, IBST and School of Medicine, Konkuk University)
Publication Information
Biomolecules & Therapeutics / v.17, no.1, 2009 , pp. 70-78 More about this Journal
Abstract
Coptis japonica (C. japonica) is a perennial medicinal plant that has anti-inflammatory activity. C. japonica contains numerous biologically active alkaloids including berberine, palmatine, epi-berberine, and coptisine. The most well-known anti-inflammatory principal in C. japonica is berberine. For example, berberine has been implicated in the inhibition of iNOS induction by cytokines in microglial cells. However, the efficacies of other alkaloids components on microglial activation were not investigated yet. In this study, we investigated the effects of three alkaloids (palmatine, epi-berberine and coptisine) from C. japonica on lipopolysaccharide (LPS)-induced microglial activation. BV2 microglial cells were immunostimulated with LPS and then the production of several inflammatory mediators such as nitric oxide (NO), reactive oxygen species (ROS) and matrix metalloproteinase-9 (MMP-9) were examined as well as the phosphorylation status of Erk1/2 mitogen activated protein kinase (MAPK). Palmatine and to a lesser extent epi-berberine and coptisine, significantly reduced the release of NO, which was mediated by the inhibition of LPS-stimulated mRNA and protein induction of inducible nitric oxide synthase (iNOS) from BV2 microglia. In addition to NO, palmatine inhibited MMP-9 enzymatic activity and mRNA induction by LPS. Palmatine also inhibited the increase in the LPS-induced MMP-9 promoter activity determined by MMP-9 promoter luciferase reporter assay. LPS stimulation increased Erk1/2 phosphorylation in BV2 cells and these alkaloids inhibited the LPS-induced phosphorylation of Erk1/2. The anti-inflammatory effect of palmatine in LPS-stimulated microglia may suggest the potential use of the alkaloids in the modulation of neuroinflammatory responses, which might be important in the pathophysiological events of several neurological diseases including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD) and stroke.
Keywords
Coptis japonica; Microglia; Nitric oxide (NO); Inducible nitric oxide synthase (iNOS); Matrixmetalloproteinase-9 (MMP-9);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 9  (Related Records In Web of Science)
Times Cited By SCOPUS : 9
연도 인용수 순위
1 Brown, G. C. (2007). Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochemical Society Transactions 35, 1119-1121   DOI   ScienceOn
2 Cossins, J. A., Clements, J. M., Ford, J., Miller, K. M., Pigott, R., Vos, W., Van der Valk, P. and De Groot, C. J. (1997). Enhanced expression of MMP-7 and MMP-9 in demyelinating multiple sclerosis lesions. Acta. Neuropathologica. 94, 590-598   DOI
3 Cunningham, C., Wilcockson, D. C., Campion, S., Lunnon, K. and Perry, V. H. (2005). Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J. Neurosci. 25, 9275-9284   DOI   ScienceOn
4 Deb, S. and Gottschall, P. E. (1996). Increased production of matrix metalloproteinases in enriched astrocyte and mixed hippocampal cultures treated with beta-amyloid peptides. J. Neurochemistry 66, 1641-1647
5 Fukuda, K., Hibiya, Y., Mutoh, M., Koshiji, M., Akao, S. and Fujiwara, H. (1999). Inhibition of activator protein 1 activity by berberine in human hepatoma cells. Planta. Medica. 65, 381-383   DOI   ScienceOn
6 Asahi, M., Wang, X., Mori, T., Sumii, T., Jung, J. C., Moskowitz, M. A., Fini, M. E. and Lo, E. H. (2001). Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J. Neurosci. 21, 7724-7732
7 Otsuka, H., Fujimura, H., Sawada, T. and Goto, M. (1981). [Studies on anti-inflammatory agents. II. Anti-inflammatory constituents from Rhizome of Coptis japonica Makino(author's transl)]. Yakugaku. Zasshi. 101, 883-890   DOI
8 Uhm, J. H., Dooley, N. P., Oh, L. Y. and Yong, V. W. (1998). Oligodendrocytes utilize a matrix metalloproteinase, MMP-9, to extend processes along an astrocyte extracellular matrix. Glia. 22, 53-63   DOI   ScienceOn
9 Liaudet, L., Soriano, F. G. and Szabo, C. (2000). Biology of nitric oxide signaling. Critical Care Medicine 28, N37-52   DOI   ScienceOn
10 Lee, D. U., Kang, Y. J., Park, M. K., Lee, Y. S., Seo, H. G., Kim, T. S., Kim, C. H. and Chang, K. C. (2003). Effects of 13-alkyl-substituted berberine alkaloids on the expression of COX-II, TNF-alpha, iNOS, and IL-12 production in LPSstimulated macrophages. Life Sciences 73, 1401-1412   DOI   ScienceOn
11 Liu, B. and Hong, J. S. (2003). Role of microglia in inflammationmediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacology and Experimental Therapeutics 304, 1-7   DOI   ScienceOn
12 McGeer, P. L., Yasojima, K. and McGeer, E, G. (2002). Association of interleukin-1 beta polymorphisms with idiopathic Parkinson's disease. Neuroscience Letters 326, 67-69   DOI   ScienceOn
13 McLaughlin, P., Zhou, Y., Ma, T., Liu, J., Zhang, W., Hong, J. S., Kovacs, M. and Zhang, J. (2006). Proteomic analysis of microglial contribution to mouse strain-dependent dopaminergic neurotoxicity. Glia. 53, 567-582   DOI   ScienceOn
14 Andjelkovic, A. V., Nikolic, B., Pachter, J. S. and Zecevic, N. (1998). Macrophages/microglial cells in human central nervous system during development: an immunohistochemical study. Brain Research 814, 13-25   DOI   ScienceOn
15 Bozdagi, O., Nagy, V., Kwei, K. T. and Huntley, G. W. (2007). In vivo roles for matrix metalloproteinase-9 in mature hippocampal synaptic physiology and plasticity. J. Neurophysiol. 98, 334-344   DOI   ScienceOn
16 Shen, S., Yu, S., Binek, J., Chalimoniuk, M., Zhang, X., Lo. S. C., Hannink. M., Wu, J., Fritsche, K., Donato, R. and Sun, G. Y. (2005). Distinct signaling pathways for induction of type II NOS by IFNgamma and LPS in BV-2 microglial cells. Neurochemistry International 47, 298-307   DOI   ScienceOn
17 Prestes-Carneiro, L. E., Shio, M. T., Fernandes, P. D. and Jancar, S. (2007). Cross-regulation of iNOS and COX-2 by its products in murine macrophages under stress conditions. Cell Physiol. Biochem. 20, 283-292   DOI   ScienceOn
18 Rosenberg, G. A. (2002). Matrix metalloproteinases in neuroinflammation. Glia. 39, 279-291   DOI   ScienceOn
19 Safciuc, F., Constantin, A., Manea, A., Nicolae, M., Popov, D., Raicu, M., Alexandru, D. and Constantinescu, E. (2007). Advanced glycation end products, oxidative stress and metalloproteinases are altered in the cerebral microvasculature during aging. Current Neurovascular Research 4, 228-234   DOI   ScienceOn
20 Gijbels, K., Proost, P., Masure, S., Carton, H., Billiau, A. and Opdenakker, G. (1993). Gelatinase B is present in the cerebrospinal fluid during experimental autoimmune encephalomyelitis and cleaves myelin basic protein. J. Neuroscience Research 36, 432-440   DOI   ScienceOn
21 Hwang, Y. S., Shin, C. Y., Huh, Y. and Ryu, J. H. (2002). Hwangryun-Hae-Dok-tang (Huanglian-Jie-Du-Tang) extract and its constituents reduce ischemia-reperfusion brain injury and neutrophil infiltration in rats. Life Sciences 71, 2105-2117   DOI   ScienceOn
22 Koistinaho, M., Malm, T. M., Kettunen, M. I., Goldsteins, G., Starckx, S., Kauppinen, R. A., Opdenakker, G. and Koistinaho, J. (2005). Minocycline protects against permanent cerebral ischemia in wild type but not in matrix metalloprotease-9-deficient mice. J. Cereb. Blood Flow Metab. 25, 460-467   DOI   ScienceOn
23 Oh, L. Y., Larsen, P. H., Krekoski, C. A., Edwards, D.R., Donovan, F., Werb, Z. and Yong, V. W. (1999). Matrix metalloproteinase-9/ gelatinase B is required for process outgrowth by oligodendrocytes. J. Neurosci. 19, 8464-8475
24 Zuo, J., Hernandez, Y. J. and Muir, D. (1998). Chondroitin sulfate proteoglycan with neurite-inhibiting activity is upregulated following peripheral nerve injury. J. Neurobiology 34, 41-54   DOI   ScienceOn
25 Minghetti, L. and Levi, G. (1998). Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Progress in Neurobiology 54, 99-125   DOI   ScienceOn
26 Mrak, R. E. and Griffin, W. S. (2007). Common inflammatory mechanisms in Lewy body disease and Alzheimer disease. J. Neuropathology and Experimental Neurology 66, 683-686   DOI
27 Perry, V. H. and Gordon, S. (1988). Macrophages and microglia in the nervous system. Trends in Neurosciences 11, 273-277   DOI   ScienceOn
28 Yokozawa, T., Chen, C. P. and Tanaka, T. (2000). Direct scavenging of nitric oxide by traditional crude drugs. Phytomedicine 6, 453-463   DOI   ScienceOn
29 Yong, V. W., Krekoski, C. A., Forsyth, P. A., Bell, R., Edwards, D. R. (1998). Matrix metalloproteinases and diseases of the CNS. Trends in Neurosciences 21, 75-80   DOI   ScienceOn
30 Shin, C. Y., Lee, W. J., Choi, J. W., Choi, M. S., Park, G. H., Yoo, B. K., Han, S. Y., Ryu, J. R., Choi, E. Y. and Ko, K. H. (2007). Role of p38 MAPK on the down-regulation of matrix metalloproteinase-9 expression in rat astrocytes. Archives of Pharmacal Research 30, 624-633   과학기술학회마을   DOI   ScienceOn
31 Yao, J. S., Chen, Y., Zhai, W., Xu, K., Young, W. L. and Yang, G. Y. (2004). Minocycline exerts multiple inhibitory effects on vascular endothelial growth factor-induced smooth muscle cell migration: the role of ERK1/2, PI3K, and matrix metalloproteinases. Circulation Research 95, 364-371   DOI   ScienceOn
32 Yasukawa, K., Takido, M., Ikekawa, T., Shimada, F., Takeuchi, M. and Nakagawa, S. (1991). Relative inhibitory activity of berberine-type alkaloids against 12-O-tetradecanoylphorbol-13-acetate-induced inflammation in mice. Chemical & Pharmaceutical Bulletin 39, 1462-1465   DOI   ScienceOn
33 Yesilada, E. and Kupeli, E. (2002). Berberis crataegina DC. root exhibits potent anti-inflammatory, analgesic and febrifuge effects in mice and rats. J. Ethnopharmacology 79, 237-248   DOI   ScienceOn
34 Majumdar, A., Cruz, D., Asamoah, N., Buxbaum, A., Sohar, I., Lobel, P. and Maxfield, F. R. (2007). Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Molecular Biology Cell 18, 1490-1496   DOI   ScienceOn
35 Bellosta, S., Dell'Agli, M., Canavesi, M., Mitro, N., Monetti, M., Crestani, M., Verotta, L., Fuzzati, N., Bernini, F. and Bosisio, E. (2003). Inhibition of metalloproteinase-9 activity and gene expression by polyphenolic compounds isolated from the bark of Tristaniopsis calobuxus (Myrtaceae). Cell Mol. Life Sci. 60, 1440-1448   DOI   ScienceOn
36 Choi, J. W., Shin, C. Y., Yoo, B. K., Choi, M. S., Lee, W. J., Han, B. H., Kim, W. K., Kim, H. C. and Ko, K. H. (2004). Glucose deprivation increases hydrogen peroxide level in immunostimulated rat primary astrocytes. J. Neuroscience Research 75, 722-731   DOI   ScienceOn
37 Fiebich, B. L., Akundi, R. S., Lieb, K., Candelario-Jalil, E., Gmeiner, D., Haus, U., Muller, W., Stratz, T. and Munoz, E. (2004). Antiinflammatory effects of $5-HT_3$ receptor antagonists in lipopolysaccharide-stimulated primary human monocytes. Scandinavian J. Rheumatology 28-32   DOI   ScienceOn
38 Kase, Y., Saitoh, K., Makino, B., Hashimoto, K., Ishige, A. and Komatsu, Y. (1999). Relationship between the antidiarrhoeal effects of Hange-Shashin-To and its active components. Phytother. Res. 13, 468-473   DOI   ScienceOn
39 Park, H., Kim, M. S., Jeon, B. H., Kim, T. K., Kim, Y. M., Ahnn, J., Kwon, D. Y., Takaya, Y., Wataya, Y. and Kim, H.S. (2003). Antimalarial activity of herbal extracts used in traditional medicine in Korea. Biological & Pharmaceutical Bulletin 26, 1623-1624   DOI   ScienceOn
40 Weinstein, J. R., Swarts, S., Bishop, C., Hanisch, U. K. and Moller, T. (2008). Lipopolysaccharide is a frequent and significant contaminant in microglia-activating factors. Glia. 56, 16-26   DOI   ScienceOn