DOI QR코드

DOI QR Code

Inhibitory Effects of Coptis japonica Alkaloids on the LPS-Induced Activation of BV2 Microglial Cells

  • Jeon, Se-Jin (Department of Pharmacology, College of Pharmacy and research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kwon, Kyung-Ja (Center for Geriatric Neuroscience Research, IBST and School of Medicine, Konkuk University) ;
  • Shin, Sun-Mi (Department of Pharmacology, College of Pharmacy and research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Lee, Sung-Hoon (Department of Pharmacology, College of Pharmacy and research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Rhee, So-Young (Department of Pharmacology, College of Pharmacy and research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Han, Seol-Heui (Center for Geriatric Neuroscience Research, IBST and School of Medicine, Konkuk University) ;
  • Lee, Jong-Min (Center for Geriatric Neuroscience Research, IBST and School of Medicine, Konkuk University) ;
  • Kim, Han-Young (Center for Geriatric Neuroscience Research, IBST and School of Medicine, Konkuk University) ;
  • Cheong, Jae-Hoon (Department of Pharmacy, Sahmyook University) ;
  • Ryu, Jong-Hoon (Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Min, Byung-Sun (College of Pharmacy, Catholic University of Daegu) ;
  • Ko, Kwang-Ho (Department of Pharmacology, College of Pharmacy and research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Shin, Chan-Young (Center for Geriatric Neuroscience Research, IBST and School of Medicine, Konkuk University)
  • Published : 2009.01.31

Abstract

Coptis japonica (C. japonica) is a perennial medicinal plant that has anti-inflammatory activity. C. japonica contains numerous biologically active alkaloids including berberine, palmatine, epi-berberine, and coptisine. The most well-known anti-inflammatory principal in C. japonica is berberine. For example, berberine has been implicated in the inhibition of iNOS induction by cytokines in microglial cells. However, the efficacies of other alkaloids components on microglial activation were not investigated yet. In this study, we investigated the effects of three alkaloids (palmatine, epi-berberine and coptisine) from C. japonica on lipopolysaccharide (LPS)-induced microglial activation. BV2 microglial cells were immunostimulated with LPS and then the production of several inflammatory mediators such as nitric oxide (NO), reactive oxygen species (ROS) and matrix metalloproteinase-9 (MMP-9) were examined as well as the phosphorylation status of Erk1/2 mitogen activated protein kinase (MAPK). Palmatine and to a lesser extent epi-berberine and coptisine, significantly reduced the release of NO, which was mediated by the inhibition of LPS-stimulated mRNA and protein induction of inducible nitric oxide synthase (iNOS) from BV2 microglia. In addition to NO, palmatine inhibited MMP-9 enzymatic activity and mRNA induction by LPS. Palmatine also inhibited the increase in the LPS-induced MMP-9 promoter activity determined by MMP-9 promoter luciferase reporter assay. LPS stimulation increased Erk1/2 phosphorylation in BV2 cells and these alkaloids inhibited the LPS-induced phosphorylation of Erk1/2. The anti-inflammatory effect of palmatine in LPS-stimulated microglia may suggest the potential use of the alkaloids in the modulation of neuroinflammatory responses, which might be important in the pathophysiological events of several neurological diseases including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD) and stroke.

Keywords

References

  1. Andjelkovic, A. V., Nikolic, B., Pachter, J. S. and Zecevic, N. (1998). Macrophages/microglial cells in human central nervous system during development: an immunohistochemical study. Brain Research 814, 13-25 https://doi.org/10.1016/S0006-8993(98)00830-0
  2. Asahi, M., Wang, X., Mori, T., Sumii, T., Jung, J. C., Moskowitz, M. A., Fini, M. E. and Lo, E. H. (2001). Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J. Neurosci. 21, 7724-7732
  3. Bellosta, S., Dell'Agli, M., Canavesi, M., Mitro, N., Monetti, M., Crestani, M., Verotta, L., Fuzzati, N., Bernini, F. and Bosisio, E. (2003). Inhibition of metalloproteinase-9 activity and gene expression by polyphenolic compounds isolated from the bark of Tristaniopsis calobuxus (Myrtaceae). Cell Mol. Life Sci. 60, 1440-1448 https://doi.org/10.1007/s00018-003-3119-3
  4. Bozdagi, O., Nagy, V., Kwei, K. T. and Huntley, G. W. (2007). In vivo roles for matrix metalloproteinase-9 in mature hippocampal synaptic physiology and plasticity. J. Neurophysiol. 98, 334-344 https://doi.org/10.1152/jn.00202.2007
  5. Brown, G. C. (2007). Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochemical Society Transactions 35, 1119-1121 https://doi.org/10.1042/BST0351119
  6. Choi, J. W., Shin, C. Y., Yoo, B. K., Choi, M. S., Lee, W. J., Han, B. H., Kim, W. K., Kim, H. C. and Ko, K. H. (2004). Glucose deprivation increases hydrogen peroxide level in immunostimulated rat primary astrocytes. J. Neuroscience Research 75, 722-731 https://doi.org/10.1002/jnr.20009
  7. Cossins, J. A., Clements, J. M., Ford, J., Miller, K. M., Pigott, R., Vos, W., Van der Valk, P. and De Groot, C. J. (1997). Enhanced expression of MMP-7 and MMP-9 in demyelinating multiple sclerosis lesions. Acta. Neuropathologica. 94, 590-598 https://doi.org/10.1007/s004010050754
  8. Cunningham, C., Wilcockson, D. C., Campion, S., Lunnon, K. and Perry, V. H. (2005). Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J. Neurosci. 25, 9275-9284 https://doi.org/10.1523/JNEUROSCI.2614-05.2005
  9. Deb, S. and Gottschall, P. E. (1996). Increased production of matrix metalloproteinases in enriched astrocyte and mixed hippocampal cultures treated with beta-amyloid peptides. J. Neurochemistry 66, 1641-1647
  10. Fiebich, B. L., Akundi, R. S., Lieb, K., Candelario-Jalil, E., Gmeiner, D., Haus, U., Muller, W., Stratz, T. and Munoz, E. (2004). Antiinflammatory effects of $5-HT_3$ receptor antagonists in lipopolysaccharide-stimulated primary human monocytes. Scandinavian J. Rheumatology 28-32 https://doi.org/10.1080/03009740410006998
  11. Fukuda, K., Hibiya, Y., Mutoh, M., Koshiji, M., Akao, S. and Fujiwara, H. (1999). Inhibition of activator protein 1 activity by berberine in human hepatoma cells. Planta. Medica. 65, 381-383 https://doi.org/10.1055/s-2006-960795
  12. Gijbels, K., Proost, P., Masure, S., Carton, H., Billiau, A. and Opdenakker, G. (1993). Gelatinase B is present in the cerebrospinal fluid during experimental autoimmune encephalomyelitis and cleaves myelin basic protein. J. Neuroscience Research 36, 432-440 https://doi.org/10.1002/jnr.490360409
  13. Hwang, Y. S., Shin, C. Y., Huh, Y. and Ryu, J. H. (2002). Hwangryun-Hae-Dok-tang (Huanglian-Jie-Du-Tang) extract and its constituents reduce ischemia-reperfusion brain injury and neutrophil infiltration in rats. Life Sciences 71, 2105-2117 https://doi.org/10.1016/S0024-3205(02)01920-3
  14. Kase, Y., Saitoh, K., Makino, B., Hashimoto, K., Ishige, A. and Komatsu, Y. (1999). Relationship between the antidiarrhoeal effects of Hange-Shashin-To and its active components. Phytother. Res. 13, 468-473 https://doi.org/10.1002/(SICI)1099-1573(199909)13:6<468::AID-PTR504>3.0.CO;2-V
  15. Koistinaho, M., Malm, T. M., Kettunen, M. I., Goldsteins, G., Starckx, S., Kauppinen, R. A., Opdenakker, G. and Koistinaho, J. (2005). Minocycline protects against permanent cerebral ischemia in wild type but not in matrix metalloprotease-9-deficient mice. J. Cereb. Blood Flow Metab. 25, 460-467 https://doi.org/10.1038/sj.jcbfm.9600040
  16. Lee, D. U., Kang, Y. J., Park, M. K., Lee, Y. S., Seo, H. G., Kim, T. S., Kim, C. H. and Chang, K. C. (2003). Effects of 13-alkyl-substituted berberine alkaloids on the expression of COX-II, TNF-alpha, iNOS, and IL-12 production in LPSstimulated macrophages. Life Sciences 73, 1401-1412 https://doi.org/10.1016/S0024-3205(03)00435-1
  17. Liaudet, L., Soriano, F. G. and Szabo, C. (2000). Biology of nitric oxide signaling. Critical Care Medicine 28, N37-52 https://doi.org/10.1097/00003246-200004001-00005
  18. Liu, B. and Hong, J. S. (2003). Role of microglia in inflammationmediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacology and Experimental Therapeutics 304, 1-7 https://doi.org/10.1124/jpet.102.035048
  19. Majumdar, A., Cruz, D., Asamoah, N., Buxbaum, A., Sohar, I., Lobel, P. and Maxfield, F. R. (2007). Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Molecular Biology Cell 18, 1490-1496 https://doi.org/10.1091/mbc.E06-10-0975
  20. McGeer, P. L., Yasojima, K. and McGeer, E, G. (2002). Association of interleukin-1 beta polymorphisms with idiopathic Parkinson's disease. Neuroscience Letters 326, 67-69 https://doi.org/10.1016/S0304-3940(02)00300-2
  21. McLaughlin, P., Zhou, Y., Ma, T., Liu, J., Zhang, W., Hong, J. S., Kovacs, M. and Zhang, J. (2006). Proteomic analysis of microglial contribution to mouse strain-dependent dopaminergic neurotoxicity. Glia. 53, 567-582 https://doi.org/10.1002/glia.20294
  22. Minghetti, L. and Levi, G. (1998). Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Progress in Neurobiology 54, 99-125 https://doi.org/10.1016/S0301-0082(97)00052-X
  23. Mrak, R. E. and Griffin, W. S. (2007). Common inflammatory mechanisms in Lewy body disease and Alzheimer disease. J. Neuropathology and Experimental Neurology 66, 683-686 https://doi.org/10.1097/nen.0b013e31812503e1
  24. Oh, L. Y., Larsen, P. H., Krekoski, C. A., Edwards, D.R., Donovan, F., Werb, Z. and Yong, V. W. (1999). Matrix metalloproteinase-9/ gelatinase B is required for process outgrowth by oligodendrocytes. J. Neurosci. 19, 8464-8475
  25. Otsuka, H., Fujimura, H., Sawada, T. and Goto, M. (1981). [Studies on anti-inflammatory agents. II. Anti-inflammatory constituents from Rhizome of Coptis japonica Makino(author's transl)]. Yakugaku. Zasshi. 101, 883-890 https://doi.org/10.1248/yakushi1947.101.10_883
  26. Park, H., Kim, M. S., Jeon, B. H., Kim, T. K., Kim, Y. M., Ahnn, J., Kwon, D. Y., Takaya, Y., Wataya, Y. and Kim, H.S. (2003). Antimalarial activity of herbal extracts used in traditional medicine in Korea. Biological & Pharmaceutical Bulletin 26, 1623-1624 https://doi.org/10.1248/bpb.26.1623
  27. Perry, V. H. and Gordon, S. (1988). Macrophages and microglia in the nervous system. Trends in Neurosciences 11, 273-277 https://doi.org/10.1016/0166-2236(88)90110-5
  28. Prestes-Carneiro, L. E., Shio, M. T., Fernandes, P. D. and Jancar, S. (2007). Cross-regulation of iNOS and COX-2 by its products in murine macrophages under stress conditions. Cell Physiol. Biochem. 20, 283-292 https://doi.org/10.1159/000107514
  29. Rosenberg, G. A. (2002). Matrix metalloproteinases in neuroinflammation. Glia. 39, 279-291 https://doi.org/10.1002/glia.10108
  30. Safciuc, F., Constantin, A., Manea, A., Nicolae, M., Popov, D., Raicu, M., Alexandru, D. and Constantinescu, E. (2007). Advanced glycation end products, oxidative stress and metalloproteinases are altered in the cerebral microvasculature during aging. Current Neurovascular Research 4, 228-234 https://doi.org/10.2174/156720207782446351
  31. Shen, S., Yu, S., Binek, J., Chalimoniuk, M., Zhang, X., Lo. S. C., Hannink. M., Wu, J., Fritsche, K., Donato, R. and Sun, G. Y. (2005). Distinct signaling pathways for induction of type II NOS by IFNgamma and LPS in BV-2 microglial cells. Neurochemistry International 47, 298-307 https://doi.org/10.1016/j.neuint.2005.03.007
  32. Shin, C. Y., Lee, W. J., Choi, J. W., Choi, M. S., Park, G. H., Yoo, B. K., Han, S. Y., Ryu, J. R., Choi, E. Y. and Ko, K. H. (2007). Role of p38 MAPK on the down-regulation of matrix metalloproteinase-9 expression in rat astrocytes. Archives of Pharmacal Research 30, 624-633 https://doi.org/10.1007/BF02977658
  33. Uhm, J. H., Dooley, N. P., Oh, L. Y. and Yong, V. W. (1998). Oligodendrocytes utilize a matrix metalloproteinase, MMP-9, to extend processes along an astrocyte extracellular matrix. Glia. 22, 53-63 https://doi.org/10.1002/(SICI)1098-1136(199801)22:1<53::AID-GLIA5>3.0.CO;2-9
  34. Weinstein, J. R., Swarts, S., Bishop, C., Hanisch, U. K. and Moller, T. (2008). Lipopolysaccharide is a frequent and significant contaminant in microglia-activating factors. Glia. 56, 16-26 https://doi.org/10.1002/glia.20585
  35. Yao, J. S., Chen, Y., Zhai, W., Xu, K., Young, W. L. and Yang, G. Y. (2004). Minocycline exerts multiple inhibitory effects on vascular endothelial growth factor-induced smooth muscle cell migration: the role of ERK1/2, PI3K, and matrix metalloproteinases. Circulation Research 95, 364-371 https://doi.org/10.1161/01.RES.0000138581.04174.2f
  36. Yasukawa, K., Takido, M., Ikekawa, T., Shimada, F., Takeuchi, M. and Nakagawa, S. (1991). Relative inhibitory activity of berberine-type alkaloids against 12-O-tetradecanoylphorbol-13-acetate-induced inflammation in mice. Chemical & Pharmaceutical Bulletin 39, 1462-1465 https://doi.org/10.1248/cpb.39.1462
  37. Yesilada, E. and Kupeli, E. (2002). Berberis crataegina DC. root exhibits potent anti-inflammatory, analgesic and febrifuge effects in mice and rats. J. Ethnopharmacology 79, 237-248 https://doi.org/10.1016/S0378-8741(01)00387-7
  38. Yokozawa, T., Chen, C. P. and Tanaka, T. (2000). Direct scavenging of nitric oxide by traditional crude drugs. Phytomedicine 6, 453-463 https://doi.org/10.1016/S0944-7113(00)80074-4
  39. Yong, V. W., Krekoski, C. A., Forsyth, P. A., Bell, R., Edwards, D. R. (1998). Matrix metalloproteinases and diseases of the CNS. Trends in Neurosciences 21, 75-80 https://doi.org/10.1016/S0166-2236(97)01169-7
  40. Zuo, J., Hernandez, Y. J. and Muir, D. (1998). Chondroitin sulfate proteoglycan with neurite-inhibiting activity is upregulated following peripheral nerve injury. J. Neurobiology 34, 41-54 https://doi.org/10.1002/(SICI)1097-4695(199801)34:1<41::AID-NEU4>3.0.CO;2-C

Cited by

  1. Cafestol, a Coffee-Specific Diterpene, Is a Novel Extracellular Signal-Regulated Kinase Inhibitor with AP-1-Targeted Inhibition of Prostaglandin E2 Production in Lipopolysaccharide-Activated Macrophages vol.33, pp.1, 2010, https://doi.org/10.1248/bpb.33.128
  2. Regulatory Effect of Cinnamaldehyde on Monocyte/Macrophage-Mediated Inflammatory Responses vol.2010, 2010, https://doi.org/10.1155/2010/529359
  3. Anti-inflammatory activity of Sorbus commixta water extract and its molecular inhibitory mechanism vol.134, pp.2, 2011, https://doi.org/10.1016/j.jep.2010.12.032
  4. Inhibitory effect of Sanguisorba officinalis ethanol extract on NO and PGE2 production is mediated by suppression of NF-κB and AP-1 activation signaling cascade vol.134, pp.1, 2011, https://doi.org/10.1016/j.jep.2010.08.060
  5. p38-Targeted inhibition of interleukin-12 expression by ethanol extract fromCordyceps bassianain lipopolysaccharide-activated macrophages vol.33, pp.1, 2011, https://doi.org/10.3109/08923973.2010.482137
  6. Anti-inflammatory activity of ethanol extract derived from Phaseolus angularis beans vol.137, pp.3, 2011, https://doi.org/10.1016/j.jep.2011.07.048
  7. Kaempferol and Kaempferol Rhamnosides with Depigmenting and Anti-Inflammatory Properties vol.16, pp.4, 2011, https://doi.org/10.3390/molecules16043338