• Title/Summary/Keyword: microcystin

Search Result 105, Processing Time 0.028 seconds

Primer Evaluation for the Detection of Toxigenic Microcystis by PCR (독소 생성 Microcystis 검출을 위한 PCR primer의 평가)

  • 이현경;김준호;유순애;안태석;김치경;이동훈
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.166-174
    • /
    • 2003
  • Microcystin produced by cyanobacteria in surface waters, such as eutrophic lake and river, is a kind of serious environmental problems due to its toxicity to human and wild animals. Microcystin is synthesized nonribosomally by the large modular multi-functional enzyme complex known as microcystin synthetase encoded by the mcy gene cluster. Amplification of mcy genes by PCR from cultures and environmental samples is a simple and efficient method to detect the toxigenic Microcystis. In order to evaluate primers designed to detect toxic microcystin-producing strains, 17 cyanobacterial strains and 20 environmental samples were examined by PCR with 7 pairs of primers. Some microcystin-producing cyanobacteria were not detected with FAA-RAA, TOX4F-TOX4R and FP-RP primers. The fragment of unexpected size was amplified with NSZW2-NSZW1 primers in Microcystis strains isolated from the lakes in Korea. TOX1P-TOX1F primers failed in amplification of toxin-producing strains. Only MSF-MSR and TOX2P- TOX2F primers amplified the fragments of mcy genes from 11 strains of microcystin-producing Microcystis. The water samples taken from 20 lakes in Korea were analyzed by PCR using each of the primers. In all the water samples, cyanobacteria capable of producing microcystin were detected by the PCR with TOX2P-TOX2F primers. These results indicate that TOX2P-TOX2F primers are better than the other primers for detection of microcystin-producing Microcystis strains in Korea. The nucleotide sequences of mcy gene in Microcystis aeruginosa NIER10010 suggest genetic diversity of Korean isolates.

Changes of Growth, Morphology and Microcystin Production in Microcystis aeruginosa in Response to Zooplankton Culture Media Filtrate (동물플랑크톤 배양여과액에 의한 Microcystis aeruginosa의 성장,형태 및 microcystin 생성량의 변화)

  • Ha, Kyong;Jang, Min-Ho;Jung, Jong-Mun;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.1-8
    • /
    • 2003
  • Growth, colony formation and microcystin production of 'low-toxic' Microcysits aeruginosa $K{\"{u}}tzing$ were examined in relation to the 'info-chemicals' released by zooplankton. Algae were cultured in a medium with or without filtered water taken from cultures of Daphnia magna Straus (300 ind./L) or Moina macrocopa Straus (500 ind./L), The growth of M. aeruginosa, based on cell number, was also significantly different from populations cultured in the media with and without filtered zooplankton water from the exponential growth phase. In the 6-day experiment, the growth pattern of M. aeruginosa cultured with ZCMF was clearly different to control with-out ZCMF. Mean number of cells/particle and particle bio-volume of M. aeruginosa increased significantly from the day 2 for the Daphnia-CMF or Moina-CMF treat-ments. Microcystin production was promoted showing from 18.7 to 55 ${\mu}g/g$-dry cell in the zooplankton treatments relative to the controls. At peaked level on day 4, the highest level of up to $70.5{\pm}16.8\;{\mu}g/g$-dry cell was observed in the D. magna treatment. This study suggested that 'info-chemicals' from zooplankton might induce the increase of algal growth rates, colony formation and microcystin production, these seem to be advantageous to the alga and thus as a grazing defense mechanism.

An Overview of Problems Cyanotoxins Produced by Cyanobacteria and the Solutions Thereby (남조류에서 발생하는 독소의 문제점과 대책)

  • Jeon, Bong-seok;Han, Jisun;Kim, Seog-Ku;Ahn, Jae-Hwan;Oh, Hye-Cheol;Park, Ho-Dong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.12
    • /
    • pp.657-667
    • /
    • 2015
  • Cyanobacteria frequently dominate the freshwater phytoplankton community in eutrophic waters. Cyanotoxins can be classified according to toxicity as neurotoxin (Anatoxin-a, Anatoxin-a(s), Saxitoxins) or hepatotoxin (microcystins, nodularin, cylindrospermopsin). Microcystins are present within cyanobacterial cells generally, and they are extracted by the damage of cell membrane. It has been reported that cyanotoxins caused adverse effects and they are acculmulated in aquatic oganisms of lake, river and ocean. In natural, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, in process of water treatment, the use of copper sulfate to remove algal cells caused extraction of a mess of microcystins. Microcysitns are removed by physical, chemical and biological methods according to reports. The reduction of nutrients (N and P) inflow is basic method of prevention of cyanobacteria bloom formation. However, it is less effective than investigation because nutrients already present in the eutrophic lake. In natural lake, cyanobacteria bloom are not formed because macrophytes invade from coastal lake by eutrophication. Therefore, a coastal lake has to recover to prevent of cyanobacteria bloom formation.

A study on the massive cultivation of cyanobacteria and strip analysis of cyanobacterial toxin (남조류의 대량배양 및 남조류 독소의 스트립분석법 연구)

  • Pyo, Dongjin;Yim, Miyeon;Kim, Eujin
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.388-394
    • /
    • 2012
  • Cyanobacterial toxins, microcystins which exist in Korean lakes show strong toxicity to fish, cattles and human. In this study, we tried to analyze cyanobacterial toxin, microcystin in the Microcystis cultivation solution using test strip, although the most common analytical methods for the detection of microcystin are HPLC and ELISA. This new anlytical method used the advantages of high specifisity and rapidness of test strip, high sensitivity of fluorescence reader. Therefore, we could analyze the trace amount of microcystin existed in various water samples without using the microcystin standards.

A Large Scale Separation & Purification of Cyanobacterial Toxins (남조류 독성물질의 대량분리 및 정제)

  • Yoon, Suk Chang;Park, Keun Young;Pyo, Dong Jin
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.51-56
    • /
    • 1998
  • It is very difficult to separate and purify the microcystins, cyanobacterial toxins since it exist in a trace level in natural lakes. In this paper, we developed a new analytical method to separate and purify the microcystin RR and LR from the freeze-dried cyanobacterial cells in natural lakes. We used 7.5 g silica gel as a stationary phase and ethyl acetate: isopropanol: water (30: 45: 25) as a mobile phase and microcystins were eluted using an open column. The eluting solvent was collected in a small bottle at the intervals of 3 mL and the fractions were chromatographed with HPLC to confirm the microcystin RR and LR.

  • PDF

Analysis of Microtoxins in the Nakdong River Watershed

  • Park, Jung-Min;Lee, Jae-Jung;Hwang, Dong-Jin;Yang, Sang-Yong
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.99-102
    • /
    • 2003
  • The different methods such as HPLC, indirect- and direct-ELISA were employed for the analysis of microtoxins and the results of each method were compared in terms of the detection limit and accurary. Three toxins, microcystin-RR, -LR and -YR were clearly separated by HPLC using 0.05 M methanol and phosphate buffer used as a solvent system. The calibration curves for the toxins were linear in the range of 5 ng to 50 ng. The standard curves for the immunoassay of microcystin obtained by direct and indirect ELISA are compared. The linear responses of inhibitions of binding by microcystin in the direct and indirect competitive ELISA were in the range of 10 ng to 1000 ng and 50 pg to 160 pg, respectively. Distribution of microtoxins at 11 sites in the Nakdong river and several lakes in Korea was also studied. The most dominant microcystin variant in the test sites was found to be microcystin-RR.

  • PDF

Developing numerical method to predict the removal of Microcystin-LR in a clear well

  • Yeo, Inhee;Park, Yong-Gyun;Kim, Dooil
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.173-179
    • /
    • 2018
  • Microcystin-LR, one of algal toxins induced by the eutrophication of a reservoir, is known to be harmful to human by adversely affecting our liver and brain. Hypochlorous acid is very efficient to remove Microcystin-LR in a clear well. The previous researches showed that CT, pH and temperature affected removal rate in batch tests. It was noted that hydrodynamic properties of clear well could also influence its removal rate. A mathematical model was built using an axial dispersion reactor model and software was used to simulate the removal rate. The model consisted of the second order differential equations including dispersion, convection, Microcystin-LR reaction with chlorine. Kinetic constants were obtained through batch tests with chlorine. They were $0.430{\times}10^{-3}L/mg/sec$ and $0.143{\times}10^{-3}L/mg/sec$ for pH 7.0 and 8.1, respectively. The axial dispersion reactor model was shown to be useful for the numerical model through conservative tracer tests. The numerical model successfully estimated the removal rate of Microcyctin-LR in a clear well. Numerical simulations showed that a small dispersion number, low pH and long hydraulic retention time were critical for higher removal rate with same chlorine dosage. This model could be used to optimize the operation of a clear well during an eutrophication season.

Chemiluminescence immunochromatographic analysis for the quantitative determination of algal toxins

  • Pyo, Dongjin;Kim, Taehoon
    • ALGAE
    • /
    • v.28 no.3
    • /
    • pp.289-296
    • /
    • 2013
  • For the quantitative detection of algal toxin, microcystin, a chemiluminescence immunochromatographic assay method was developed. The developed system consists of four parts, chemiluminescence assay strip (nitrocellulose membrane), horse radish peroxidase labeled microcystin monoclonal antibodies, chemiluminescence substrate (luminol and hydrogen peroxide), and luminometer. The performance of the chemiluminescence immunochromatographic assay system was compared with high performance liquid chromatography (HPLC) detection. The detection limit of chemiluminescence immunochromatographic assay system is several orders of magnitude lower than with HPLC. The chemiluminescence immunochromatography and HPLC results correlated very well with the correlation coefficient ($r^2$) of 0.979.

CHRONIC TOXICITY OF MICROCYSTIN-LR IN MICE

  • Kim, Yeo-Jung;Lim, Chae-Woong;Rim, Byung-Moo
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.148-148
    • /
    • 2002
  • This study is to characterize the microscopical and ultrastructural changes in chronic exposure of Microcystin-LR (MCLR), a cyclic heptapeptide hepatotoxin, comparing to those in acute lethal toxicity. Female ICR mice were injected intraperitoneally with 10, 20, 30,$\mu\textrm{g}$/kg of MCLR every 3 day for 27 days.(omitted)

  • PDF

Development of New Analysis Method of Cyanobacterial Toxins in Reservoirs (호수에서의 남조류 독성물질의 새로운 분석법 개발)

  • Pyo, Dong Jin;Song, Gi Seop;Yun, Seok Chang;Kim, Beom Cheol;Lee, Dae Un
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.10
    • /
    • pp.741-748
    • /
    • 1994
  • A new HPLC method for the analysis of cyanobacterial toxins, i.e. microcystin was developed using cyano-type prepacked cartridge while the conventional method was to utilize ODS cartridge. The cartridge was washed with 0.5 M acetic acid, then microcystins RR and LR were eluted from the cartridge with 30% acetonitrile. A better degree of quantitation was observed than with a ODS cartridge. Especially, in the case of microcystin LR a great difference in peak area was observed.

  • PDF