Primer Evaluation for the Detection of Toxigenic Microcystis by PCR

독소 생성 Microcystis 검출을 위한 PCR primer의 평가

  • 이현경 (충북대학교 미생물학과 및 바이오연구소) ;
  • 김준호 (충북대학교 미생물학과 및 바이오연구소) ;
  • 유순애 (배재대학교 생물학과) ;
  • 안태석 (강원대학교 환경학과) ;
  • 김치경 (충북대학교 미생물학과 및 바이오연구소) ;
  • 이동훈 (충북대학교 미생물학과 및 바이오연구소)
  • Published : 2003.09.01

Abstract

Microcystin produced by cyanobacteria in surface waters, such as eutrophic lake and river, is a kind of serious environmental problems due to its toxicity to human and wild animals. Microcystin is synthesized nonribosomally by the large modular multi-functional enzyme complex known as microcystin synthetase encoded by the mcy gene cluster. Amplification of mcy genes by PCR from cultures and environmental samples is a simple and efficient method to detect the toxigenic Microcystis. In order to evaluate primers designed to detect toxic microcystin-producing strains, 17 cyanobacterial strains and 20 environmental samples were examined by PCR with 7 pairs of primers. Some microcystin-producing cyanobacteria were not detected with FAA-RAA, TOX4F-TOX4R and FP-RP primers. The fragment of unexpected size was amplified with NSZW2-NSZW1 primers in Microcystis strains isolated from the lakes in Korea. TOX1P-TOX1F primers failed in amplification of toxin-producing strains. Only MSF-MSR and TOX2P- TOX2F primers amplified the fragments of mcy genes from 11 strains of microcystin-producing Microcystis. The water samples taken from 20 lakes in Korea were analyzed by PCR using each of the primers. In all the water samples, cyanobacteria capable of producing microcystin were detected by the PCR with TOX2P-TOX2F primers. These results indicate that TOX2P-TOX2F primers are better than the other primers for detection of microcystin-producing Microcystis strains in Korea. The nucleotide sequences of mcy gene in Microcystis aeruginosa NIER10010 suggest genetic diversity of Korean isolates.

Microcystin은 부영양화된 하천과 호수에서 cyanobacteria에 의해 생성되며 인간과 야생 동물에게 독성 물질로 작용하여 심각한 환경문제를 일으킨다. Microcystin은 mcy 유전자에 의해 암호화되는 microcystin synthetase로 알려진 multi-functional enzyme complex에 의해 리보좀의 관여 업이 합성된다. 따라서 mcy유전자의 PCR 증폭을 통해 독소를 생성하는 Microcystis를 효과적으로 검출할 수 있다. 본 연구에서는 microcystin을 생성하는 균주를 구별하기 위해 설계된 7종의 primer쌍의 유용성을 검증하기 위하여, 17주의 cyanobacteria와 국내 호수 시료에서 추출된 핵산을 대상으로 PCR 증폭을 하였다. TOX4E-TOX4R, FAA-RAA, FP-RP primer쌍에 의해서는 독소를 생성하는 Microcystis 균주 중 일부가 검출되지 않았다. NSZW2-NSZW1 primer쌍을 사용한 PCR의 경우 microcystin을 생성하는 국내 균주에서 예상하지 못한 크기의 산물이 관찰되었다. TOX1P-TOX1F primer쌍으로 PCR을 한 결과, 증폭된 산물을 관찰할 수 없었다. MSF-MSR과 TOX2P-TOX2F primer쌍만이 독소를 생성하는 11주의 Microcystis로부터 mcy유전자의 증폭을 성공하였다. 20개의 국내호수 시료에 각 Primer쌍에 의한 증폭여부를 확인한 결과, TOX2P-TOX2F primer쌍을 사용한 경우에만 모든 호수 시료에서 증폭된 산물을 관찰할 수 있었다. 본 연구 결과 TOX2P-TOX2F primer쌍이 국내 환경에서 독소를 생산하는 Microcystis를 검출하는데 가장 우수한 primer임을 확인할 수 있었다. 또한 Microcystis aenginosa NIER10010의 mcy 유전자의 염기서열 분석을 통해 국내 분리 균주의 유전적 다양성을 확인할 수 있었다.X> 을 일부 함유하고 있기 때문인 것으로 여겨진다. 궁극적으로 이 연구결과는 벤토나이트의 품위 산정에는 XRD 정량분석법이 적용되는 것이 합리적이고 CEC와 관련된 품질 특성은 전적으로 ‘Total CEC’ 개념에 의거하여 평가되어야 한다는 것을 시사한다.세균은 부유세균과는 다른 다양성을 이루고, 다른 천이과정을 거치는 것으로 확인되었다.로 interlayer된 것을 보여준다. 이와 같은 결과는 백운모, 녹니석 및 흑운모와 같은 변성 광물들이 비평형 광물 반응으로 만들어 졌으며 그 결과 불균질한 광물로 되었다는 것을 암시한다. led to the highest durability of all tested here. The reason of the improvement is due to thin MgF$_2$, which can prevent the $Mg_2$Ni electrode from forming Mg(OH)$_2$layer that is the main cause of degradation.platin에 의한 직접적 폐 독성은 발견되지 않았다이 낮았으나 통계학적 의의는 없었다[10.0%(4/40) : 8.2%(20/244), p>0.05]. 결론: 비디오흉강경술에서 재발을 낮추기 위해 수술시 폐야 전체를 관찰하여 존재하는 폐기포를 놓치지 않는 것이 중요하며, 폐기포를 확인하지 못한 경우와 이차성 자연기흉에 대해서는 흉막유착술에 더 세심한 주의가 필요하다는 것을 확인하였다. 비디오흉강경수술은 통증이 적고, 입원기간이 짧고, 사회로의 복귀가 빠르며, 고위험군에 적용할 수 있고, 무엇보다도 미용상의 이점이 크다는 면에서 자연기흉에 대해 유용한 치료방법임에는 틀림이 없으나 개흉술에 비해 재발율이 높고 비용이 비싸다는 문제가 제기되고 있는 만큼 더 세심한 주의와 장기 추적관찰이 필요하리라 사료된다.전 도부타민 심초음파는 관상동맥우회로술 후 동면심근의

Keywords

References

  1. 한국육수학회지 v.32 국내 호수에서 발생한 남조류의 microcystin 함량과 독성평가 김범철;김호섭;박호동;최광순;박종근
  2. Toxicon v.32 Use of a colorimetric protein phosphatase inhibition assay and enzyme linked immunosorbent assay for the study of mirocystins and nodularins An,J.;W.W.Carmichael https://doi.org/10.1016/0041-0101(94)90308-5
  3. FEMS Microbiol. Lett. v.137 Highly repetitive sequences and characteristics of genomic DNA in unicellular cyanobacterial strains Asayama,M.;M.Kabasawa;I.Takahashi;T.Aida;M.Shirai https://doi.org/10.1111/j.1574-6968.1996.tb08102.x
  4. Appl. Environ. Microbiol. v.68 Monitoring changing toxigenicity of a cyanobacterial bloom by molecular methods Baker,J.A.;B.Entsch;B.A.Neilan;D.B.McKay https://doi.org/10.1128/AEM.68.12.6070-6076.2002
  5. Environ. Toxicol. v.16 Identification of cyanobacteria and the their toxigenicity in environmental samples by rapid molecular analysis Baker,J.A.;B.A.Neilan;B.Entsch;D.B.McKay https://doi.org/10.1002/tox.10010
  6. Algal Toxins in Seafood and Drinking Water Diseases related to freshwater blue-green algal toxins, and control measures Falconer,I.R.
  7. Front Biosci. v.4 Molecular mechanisms underlying inhibition of protein phosphatases by marine toxins Dawson,J.F.;C.F.Holmes https://doi.org/10.2741/Dawson
  8. Environ. Health Perspect. v.106 Microcystic cyanobacteria causes mitochondrial membrane potential alteration and reactive oxygen species formation in primary cultured rat hepatocytes Ding,W.X.;H.M.Shen;Y.Shen;H.G.Zhu;C.N.Ong https://doi.org/10.2307/3434068
  9. The phototrophic Prokaryotes Peptide synthetase genes occur in various species of cyanobacteria Dittmann,E.;B.A.Neilan;T.Borner;G.A.Pescheck(ed.);W.Loeffehardt(ed.);G.Schemetterer(ed.)
  10. Algal Toxins in Seafood and Drinking Water. Mechanisms of toxicity of cyclic peptide toxins from blue-green algae Falconer,I.R.
  11. J. Chromatogr. v.448 Analysis and purification of toxic peptides from cyanobacteria by reverse-phase high-performance liquid chromatography Harada,K.I.;K.Matsuura;M.Suzuki;H.Oka;M.F.Watanabe;S.Oishi;A.M.Dahelm;V.R.Beasley;W.W.Carmichael https://doi.org/10.1016/S0021-9673(01)84589-1
  12. Neurotoxicology v.19 Insect (Locusta migratoria migratorioides) test monitoring the toxicity of cyanobateria Hiripi,L.;L.Nagy;T.Kalmar;A.Kovacs;L.Voros
  13. Microb. Ecol. v.43 Diversity of microcystin genes within a population of toxic cyanbacterium Microcystis spp. in lake Wannsee(Berlin,Germany) Kurmayer,R.;E.Dittmann;J.Fastner;I.Chorus https://doi.org/10.1007/s00248-001-0039-3
  14. Nat.Toxins v.7 Possible cause of unnatural mass death of wild birds in a pond in Nishinomiya, Japan: sudden appearance of toxic cyanobacteria Matsunaga,H.;K.I.Harada;M.Senma;Y.Ito;N.Yasuda;S.Ushida;Y.Kimura https://doi.org/10.1002/(SICI)1522-7189(199903/04)7:2<81::AID-NT44>3.0.CO;2-O
  15. Nat Toxins v.7 A new type sandwich immunoassay for microcystin: production of monoclonal antibodies specific to tne immune cmplex formed by microcystin and an anti-microcystin monoclonal antibody Nagata,S.;T.Tsutsumi;F.Yoshida;Y.Ueno https://doi.org/10.1002/(SICI)1522-7189(199903/04)7:2<49::AID-NT43>3.0.CO;2-7
  16. J. AOAC Int. v.80 Enzyme immunoassay for direct detection of microcystins in environmental water Nagata,S.;T.Tsutsumi;A.Hasegawa;F.Yoshida;Y.Ueno;M.Watanabe
  17. J. Bacteriol. v.181 Nonribosomal peptide synthesis and toxigenicity of syanobacteria Neilan,B.A.;E.Dittmann;L.Rouhianen;B.R.Amanda;V.Schaub;K.Sivonen;T.Borner
  18. J. Syst. Bacteriol. v.47 rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis Neilan,B.A.;D.Jacobs;T.D.Dot;L.L.Blackall;P.R.Hawkins;P.T.Cox;A.E.Goodman https://doi.org/10.1099/00207713-47-3-693
  19. Syst. App. Microbiol. v.20 Specific amplification and restirction polymorphisms of the cyanobacterial rRNA operon spacer region Neilan,B.A.;J.L.Stuart;A.E.Goodman;P.T.Cox;P.R.Hawkins https://doi.org/10.1016/S0723-2020(97)80033-1
  20. Appl. Environ. Microbiol. v.61 Identification and phylogenetic analysis of toxigenic cyanobacteria using a multiplex randomly amplified polymorphic DNA PCR Neilan,B.A.
  21. Appl. Environ. Microbiol. v.61 Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus Neilan,B.A.;D.Jacobs;A.E.Goodman
  22. Biosci. Biotechnol. Biochem. v.61 Random amplified polymorphic DNA (RAPD) analyses for discriminating genotypes of Microcystis cyanobacteria Nishihara,H.;H.Miwa;M.Watanabe;M.Nagashima;O.Yagi;Y.Takamura https://doi.org/10.1271/bbb.61.1067
  23. J. Biochem. v.127 Polypetide synthase gene coupled to the peptide synthetase module involved in the biosynthesis of the cyclic heptapeptide microcystin Nishizawa,T.;A.Ueda;.M.Asayama;K.Fujii;K.Harada;K.Ochi;M.Shirai https://doi.org/10.1093/oxfordjournals.jbchem.a022670
  24. J. Biochem. v.126 Genetic analysis of the peptide synthetase genes for a cyclicheptapeptide microcystin in Microcystis spp. Nishizawa,T.;M.Asayama;K.Fujii;K.Harada;M.Shirai https://doi.org/10.1093/oxfordjournals.jbchem.a022481
  25. Appl. Environ. Microbiol. v.67 Seasonal variation and indirect monitoring of microcystin concentrations in Daechung reservoir, Korea Oh,H.M.;S.J.Lee;J.H.Kim;H.S.Kim;B.D.Yoon https://doi.org/10.1128/AEM.67.4.1484-1489.2001
  26. FEMS Microbiol. Lett. v.172 Phylogenetic relationship between toxic and nontoxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence Otsuka,S.;S.Suda;R.Ki;M.Watanabe;H.oyaizu;S.Matsumoto;M.M.Watanabe https://doi.org/10.1111/j.1574-6968.1999.tb13443.x
  27. FEMS Microbiol. Lett. v.164 16S rDNA sequence and phylogenetic analysis of Microcystis strains with and without phycoerythrin Otsuka,S.;S.Suda;R.Li;M.Watanabe;H.Oyaizu;S.Matsumoto;M.M.Watanabe https://doi.org/10.1111/j.1574-6968.1998.tb13076.x
  28. Arch. Mcirobiol. v.178 Detection of hepatotoxic Microcystis strains by PCR with intact cells from both culture and environmental samples Pan,H.;L.Song;.Y.Liu;T.Boner https://doi.org/10.1007/s00203-002-0464-9
  29. Ecotechnology in environmental protection & fresh water lake manaement Investigation of target genes by PCR from intact cyanobacteria cells Pan,H.;L.Song;Y.Liu;Y.Zhu;L.Lei
  30. Environ. Toxicol. Wat. Qual. v.13 Hepatotoxic mirocystins and neurotoxic anatoxin-a in cyanobacterial blooms from Korean Lakes Park,H.D.;B.Kim;E.Kim;T.Okino https://doi.org/10.1002/(SICI)1098-2256(1998)13:3<225::AID-TOX4>3.0.CO;2-9
  31. Lancet v.352 Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil Pouria,S.;A.Deandrade;J.Barbosa;R.L.Carvalcanti;V.T.S.Barreto;C.J.Ward;W.Preiser;G.K.Poon;G.H.Neild;G.A.Codd https://doi.org/10.1016/S0140-6736(97)12285-1
  32. FEMS Microbiol. Lett. v.79 DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities Rochelle,P.A.;J.C.Fry;R.J.Parkes;A.J.Weightman
  33. J. Bacteriol. v.177 Characterization of toxin-producing cyanobacteria by using an oligonucleotide probe containing a tandemly repeated heptamer Rouhianen,L.;K.Sivonen;W.J.Buikema;R.Haselkorn https://doi.org/10.1128/jb.177.20.6021-6026.1995
  34. Appl. Environ. Microbiol. v.67 Detection for toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: Comparison of toxicities with 16S rRNA and phycocyanin operon (phycocyanin intergenic spacer)phylogenies Tillett,D.;D.L.Parker;B.A.Neilan https://doi.org/10.1128/AEM.67.6.2810-2818.2001
  35. Chem. Biol. v.7 Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polykitids synthetase system Tillett,D.;E.Dittmann;M.Erhard;H. von Dohren;T.Borner;B.A.Neilan https://doi.org/10.1016/S1074-5521(00)00021-1
  36. Water Res. v.35 Cyanobacteria diversity and toxicity in a wastewater treatment plant (Portugal) Vasconcelos,V.M.;E.Pereira https://doi.org/10.1016/S0043-1354(00)00512-1
  37. Syst. Appl. Microbiol. v.21 First report on the idenitification of microcystin in a water bloom collected in Belgium Wirsing.B.;L.Hoffmann;R.Heinze;D.Klein;D.Daloze;J.C.Braekman;J.Weckesser https://doi.org/10.1016/S0723-2020(98)80004-0
  38. Guidelines for drinking-water quality(2nd ed.) Addendum to Volume 1. Recommendations WHO