• 제목/요약/키워드: micro-crystalline

검색결과 194건 처리시간 0.032초

삼상 실리콘 기판을 사용한 저가 전극 함몰형 태양전지 (Buried contact solar cells using tri-crystalline silicon wafer)

  • 권재홍;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.176-180
    • /
    • 2003
  • Tri-crystalline silicon (Tri-Si) wafers have three different orientations and three grain boundaries. In this paper, tri-Si wafers have been used for the fabrication of buried contact solar cells. The optical and micro-structural properties of these cells after texturing in KOH solution have been investigated and compared with those of cast multi-crystalline silicon (multi-Si) wafers. We employed a cost effective fabrication process and achieved buried contact solar cell (BCSC) energy conversion efficiencies up to 15% whereas the cast multi-Si wafer has efficiency around 14%.

  • PDF

집적도를 높인 평면형 가스감지소자 어레이 제작기술 (New Fabrication method of Planar Micro Gas Sesnor Array)

  • 정완영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.727-730
    • /
    • 2003
  • Thin tin oxide film with nano-size particle was prepared on silicon substrate by hydrothermal synthetic method and successive sol-gel spin coating method. The fabrication method of tin oxide film with ultrafine nano-size crystalline structure was tried to be applied to fabrication of micro gas sensor array on silicon substrate. The tin oxide film on silicon substrate was well patterned by chemical etching upto 5${\mu}{\textrm}{m}$width and showed very uniform flatness. The tin oxide film preparation method and patterning method were successfully applied to newly proposed 2-dimensional micro sensor fabrication.

  • PDF

Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials

  • Hamad, Luay Badr;Khalaf, Basima Salman;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • 제8권3호
    • /
    • pp.179-196
    • /
    • 2019
  • This paper researches static and dynamic bending behaviors of a crystalline nano-size shell having pores and grains in the framework of strain gradient elasticity. Thus, the nanoshell is made of a multi-phase porous material for which all material properties on dependent on the size of grains. Also, in order to take into account small size effects much accurately, the surface energies related to grains and pores have been considered. In order to take into account all aforementioned factors, a micro-mechanical procedure has been applied for describing material properties of the nanoshell. A numerical trend is implemented to solve the governing equations and derive static and dynamic deflections. It will be proved that the static and dynamic deflections of the crystalline nanoshell rely on pore size, grain size, pore percentage, load location and strain gradient coefficient.

비정질 수정과 실리콘 마이크로 캔틸레버 구조물의 Q-factor 비교 연구 (A comparative study on Q-factors of fused quartz and silicon micro cantilevers)

  • 송은석;김용권;백창욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1505_1506
    • /
    • 2009
  • In this paper, micro cantilevers which are made of two different materials - fused quartz and single crystalline silicon - and have similar dimensions were fabricated and their mechanical Q-factors were evaluated to compare intrinsic damping properties of those two materials. Resonant frequencies and Q-factors were measured for the cantilevers having fixed widths and thicknesses, and different lengths. The measured Q-values are in a range of 64,000 - 108,000 for fused quartz cantilevers, and 31,000 - 35,000 for silicon cantilevers, respectively. Experimental results support high Q-factors of fused quartz compared to single crystalline silicon due to its good intrinsic damping properties.

  • PDF

Development and Verification of PZT Actuating Micro Tensile Tester for Optically Functional Materials

  • Kim Seung-Soo;Lee Hye-Jin;Lee Hyoung-Wook;Lee Nak-Kyu;Han Chang-Soo;Hwang Jai-Hyuk
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.477-485
    • /
    • 2005
  • This paper is concerned with the development of a micro tensile testing machine for optically functional materials such as single or poly crystalline silicon and nickel film. This micro tensile tester has been developed for testing various types of materials and dimensions. PZT type actuation is utilized for precise displacement control. The specifications of the PZT actuated micro tensile testers developed are as follows: the volumetric size of the tester is desktop type of 710mm' 200mm' 270mm; the maximum load capacity and the load resolution in this system are IKgf and 0.0152mgf respectively and; the full stroke and the stoke resolution of the PZT actuator are $1000{\mu}m$ and 10nm respectively. Special automatic specimen installing and setting equipment is applied in order to prevent unexpected deformation and misalignment of specimens during handling of specimens for testing. Nonlinearity of the PZT actuator is compensated to linear control input by an inverse compensation method that is proposed in this paper. The strain data is obtained by ISDG method that uses the laser interference phenomenon. To test the reliance of this micro tensile testing machine, a $200{\mu}m$ thickness nickel thin film and SCS (Single Crystalline Silicon) material that is made with the MEMS fabrication process are used.

Extended Sacrificial Bulk Micromachining Process and Its Application to the Fabrication of X-axis Single-crystalline Silicon Micro-gyroscope

  • Kim, Jong-Pal;Park, Sang-Jun;Kwak, Dong-Hun;Ko, Hyoung-Ho;Song, Tae-Yong;Setiadi, Dadi;Carr, William;Buss, James;Dancho, Dong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1547-1552
    • /
    • 2003
  • In this paper, we present a planar single-crystalline silicon x-axis micro-gyroscope fabricated with a perfectly aligned vertical actuation combs on one silicon wafer, using the extended SBM technology. The fabricated x-axis micro-gyroscope has the resolution of 0.1 deg/sec, the bandwidth of 100 Hz. These research results allow integrating 6 axes inertial measurement (3 accelerations and 3 angular rates) on the same silicon substrate using the same process for the first time.

  • PDF

Scratching Test에 의한 단결정 실리콘의 기계적 손상거동 (Mechanical Damage Behavior of Single Crystalline Silicon by Scratching Test)

  • 김현호;정성민;이홍림
    • 한국세라믹학회지
    • /
    • 제40권1호
    • /
    • pp.104-108
    • /
    • 2003
  • 스크래칭 시험(scratching test)을 이용하여 단결정 실리콘의 수직하중에 대한 마찰계수, AE(Acoustic Emission) 신호와 긁힌 자취의 미세균열을 관찰하고 그 결정구조를 분석하였다. 스크래칭 시험은 하중인가속도(loading rate)를 100N/min으로 하고 스크래칭 속도(scratching speed)를 1, 3, 6, 10mm/min의 4가지로 하여 최대 30N이 될 때까지 행하였다. 그 결과, 수직하중 또는 스크래칭 속도가 증가할 때 마찰계수, AE, 균열밀도는 증가하는 경향을 나타내었다. 스크래칭, 자취에 대한 마이크로 라만 분광법을 이용한 결정구조 분석결과, 스크래칭 속도가 느린 조건에서 압력인가에 따른 실리콘의 다이아몬드 구조에서 다른 고압상의 구조로의 상전이 현상을 관찰할 수 있었다.

CBD법에 위한 ZnO 마이크로 막대 구조체의 2차원 배열 및 수직정렬 (Array of 2-dimensions and Vertical Alignment of Zinc Oxide Micro Rod by the CBD Method)

  • 이역규;남효덕;이상환;전찬욱
    • 한국전기전자재료학회논문지
    • /
    • 제22권8호
    • /
    • pp.682-688
    • /
    • 2009
  • A periodic away of zinc oxide(ZnO) micro-rods as fabricated by using chemical bath deposition and photo-lithography. Vertically aligned ZnO micro-rods array was successfully grown by chemical bath deposition method on ZnO seed layer. The ZnO seed layer was deposited on glass and the patterning was made by standard photo-lithography technique. The selective growth of ZnO micro-rods as achieved with the masked ZnO seed layer. The fabricated ZnO micro rods were found to be single crystalline and have grown along hexagonal c-axis direction of (0002) which is same as the preferred growth orientation of ZnO seed layer.

타원궤적 진동절삭법을 이용한 미세 면선삭 (Micro Turning on Face using Elliptical Vibration Cutting)

  • 김기대;노병국
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.82-88
    • /
    • 2009
  • Ultra-precision turning is highly needed to manufacture molds for precision lens. In this study, micro-turning combined with elliptical vibration cutting (EVC), which is known to enhance micro- machining quality, was investigated by installing a rotary stage into the micro-grooving machine. From machining experiments involving materials of copper, brass, and aluminum and single and poly crystalline diamond tools, it was found that EVC produced thinner and curlier chips and that better surface finish could be achieved, compared with conventional turning, owing to prohibition of formation of burrs and built-up edges. Therefore, we found EVC micro turning could be readily utilized to manufacture precision mold.