Browse > Article
http://dx.doi.org/10.12989/amr.2019.8.3.179

Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials  

Hamad, Luay Badr (Al-Mustansiriah University, Engineering Collage)
Khalaf, Basima Salman (Al-Mustansiriah University, Engineering Collage)
Faleh, Nadhim M. (Al-Mustansiriah University, Engineering Collage)
Publication Information
Advances in materials Research / v.8, no.3, 2019 , pp. 179-196 More about this Journal
Abstract
This paper researches static and dynamic bending behaviors of a crystalline nano-size shell having pores and grains in the framework of strain gradient elasticity. Thus, the nanoshell is made of a multi-phase porous material for which all material properties on dependent on the size of grains. Also, in order to take into account small size effects much accurately, the surface energies related to grains and pores have been considered. In order to take into account all aforementioned factors, a micro-mechanical procedure has been applied for describing material properties of the nanoshell. A numerical trend is implemented to solve the governing equations and derive static and dynamic deflections. It will be proved that the static and dynamic deflections of the crystalline nanoshell rely on pore size, grain size, pore percentage, load location and strain gradient coefficient.
Keywords
crystalline material; static bending; porous nanoshell; strain gradient; Mori-Tanaka scheme;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., Int. J., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175
2 Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monitor. Maint., Int. J., 6(2), 147-159. https:// doi.org/10.12989/smm.2019.6.2.147
3 Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-dimens. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014   DOI
4 Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., Int. J., 5(4), 393-414. https://doi.org/10.12989/anr.2017.5.4.393   DOI
5 Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., Int. J., 60(4), 707-727. https://doi.org/10.12989/sem.2016.60.4.707   DOI
6 Barati, M.R. and Shahverdi, H. (2017a), "An analytical solution for thermal vibration of compositionally graded nanoplates with arbitrary boundary conditions based on physical neutral surface position", Mech. Adv. Mater. Struct., 24(10), 840-853. https://doi.org/10.1080/15376494.2016.1196788   DOI
7 Barati, M.R. and Shahverdi, H. (2017b), "Hygro-thermal vibration analysis of graded double-refinednanoplate systems using hybrid nonlocal stress-strain gradient theory", Compos. Struct., 176, 982-995. https://doi.org/10.1016/j.compstruct.2017.06.004   DOI
8 Barati, M.R. and Shahverdi, H. (2017c), "Vibration analysis of multi-phase nanocrystalline silicon nanoplates considering the size and surface energies of nanograins/nanovoids", Int. J. Eng. Sci., 119, 128-141. https://doi.org/10.1016/j.ijengsci.2017.06.002   DOI
9 Barati, M.R. and Shahverdi, H. (2017d), "Frequency analysis of porous nano-mechanical mass sensors made of multi-phase nanocrystalline silicon materials", Mater. Res. Express, 4(7), 075019. https://doi.org/10.1088/2053-1591/aa7ac2   DOI
10 Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., Int. J., 19(6), 601-614. https://doi.org/10.12989/sss.2017.19.6.601
11 Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227   DOI
12 Ebrahimi, F. and Barati, M.R. (2016), "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122(10), 910. https://doi.org/10.1007/s00339-016-0441-9   DOI
13 Ebrahimi, F. and Barati, M.R. (2017a), "Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects", Acta Mechanica, 228(3), 1197-1210. https://doi.org/10.1007/s00707-016-1755-6   DOI
14 Ebrahimi, F. and Barati, M.R. (2017b), "Size-dependent vibration analysis of viscoelastic nanocrystalline silicon nanobeams with porosities based on a higher order refined beam theory", Compos. Struct., 166, 256-267. https://doi.org/10.1016/j.compstruct.2017.01.036   DOI
15 Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of porous multi-phase nanocrystalline nonlocal beams based on a general higher-order couple-stress beam model", Struct. Eng. Mech., Int. J., 65(4), 465-476. https://doi.org/10.12989/sem.2018.65.4.465
16 Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Compos. Struct., 94(6), 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023   DOI
17 Eltaher, M.A., Mahmoud, F.F., Assie, A.E. and Meletis, E.I. (2013), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Math. Computat., 224, 760-774. https://doi.org/10.1016/j.amc.2013.09.002   DOI
18 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803   DOI
19 Farajpour, A., Rastgoo, A. and Mohammadi, M. (2017), "Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment", Physica B: Condensed Matter, 509, 100-114. https://doi.org/10.1016/j.physb.2017.01.006   DOI
20 Ke, L.L., Wang, Y.S. and Reddy, J.N. (2014), "Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions", Compos. Struct., 116, 626-636. https://doi.org/10.1016/j.compstruct.2014.05.048   DOI
21 Li, C. (2014a), "A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries", Compos. Struct., 118, 607-621. https://doi.org/10.1016/j.compstruct.2014.08.008   DOI
22 Li, C. (2014b), "Torsional vibration of carbon nanotubes: comparison of two nonlocal models and a semicontinuum model", Int. J. Mech. Sci., 82, 25-31. https://doi.org/10.1016/j.ijmecsci.2014.02.023   DOI
23 Li, C., Guo, L., Shen, J.P., He, Y.P. and Ju, H. (2013), "Forced Vibration Analysis on Nanoscale Beams Accounting for Effective Nonlocal Size Effects", Adv. Vib. Eng., 12(6), 623-633.
24 Mehralian, F., Beni, Y.T. and Ansari, R. (2016), "Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell", Compos. Struct., 152, 45-61. https://doi.org/10.1016/j.compstruct.2016.05.024   DOI
25 Li, L., Hu, Y. and Ling, L. (2016), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E: Low-dimens. Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028   DOI
26 Lim, C.W. (2010), "On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection", Appl. Math. Mech., 31(1), 37-54. https://doi.org/10.1007/s10483-010-0105-7   DOI
27 Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001   DOI
28 Mehralian, F., Beni, Y.T and Zeverdejani, M.K. (2017), "Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes", Physica B: Condensed Matter, 514, 61-69. https://doi.org/10.1016/j.physb.2017.03.030   DOI
29 Merazi, M., Hadji, L., Daouadji, T.H., Tounsi, A. and Adda Bedia, E.A. (2015), "A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position", Geomech. Eng., Int. J., 8(3), 305-321. https://doi.org/10.12989/gae.2015.8.3.305   DOI
30 Meyers, M.A., Mishra, A. and Benson, D.J. (2006), "Mechanical properties of nanocrystalline materials", Progress Mater. Sci., 51(4), 427-556. https://doi.org/10.1016/j.pmatsci.2005.08.003   DOI
31 Sun, J., Lim, C.W., Zhou, Z., Xu, X. and Sun, W. (2016), "Rigorous buckling analysis of size-dependent functionally graded cylindrical nanoshells", J. Appl. Phys., 119(21), 214303. https://doi.org/10.1063/1.4952984   DOI
32 Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., Int. J., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397
33 Saidi, H., Tounsi, A. and Bousahla, A.A. (2016), "A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations", Geomech. Eng., Int. J., 11(2), 289-307. https://doi.org/10.12989/gae.2016.11.2.289   DOI
34 Shen, J.P., Wang, P.Y., Li, C. and Wang, Y.Y. (2019), "New observations on transverse dynamics of microtubules based on nonlocal strain gradient theory", Compos. Struct., 225, 111036. https://doi.org/10.1016/j.compstruct.2019.111036   DOI
35 Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011   DOI
36 Wang, G.F., Feng, X.Q., Yu, S.W. and Nan, C.W. (2003), "Interface effects on effective elastic moduli of nanocrystalline materials", Mater. Sci. Eng.: A, 363(1), 1-8. https://doi.org/10.1016/S0921-5093(03)00253-3   DOI
37 Zaera, R., Fernandez-Saez, J. and Loya, J.A. (2013), "Axisymmetric free vibration of closed thin spherical nano-shell", Compos. Struct., 104, 154-161. https://doi.org/10.1016/j.compstruct.2013.04.022   DOI
38 Zeighampour, H. and Beni, Y.T. (2014), "Cylindrical thin-shell model based on modified strain gradient theory", Int. J. Eng. Sci., 78, 27-47. https://doi.org/10.1016/j.ijengsci.2014.01.004   DOI
39 Zhou, J.Q., Wang, L. and Ye, Z.X. (2013), "Micromechanics model for nanovoid growth in nanocrystalline materials", Appl. Mech. Mater., 364, 754-759. https://doi.org/10.4028/www.scientific.net/AMM.364.754   DOI
40 Zenkour, A.M. and Abouelregal, A.E. (2014), "Vibration of FG nanobeams induced by sinusoidal pulseheating via a nonlocal thermoelastic model", Acta Mechanica, 225(12), 3409-3421. https://doi.org/10.1007/s00707-014-1146-9   DOI