• Title/Summary/Keyword: micro-PCR

Search Result 199, Processing Time 0.023 seconds

Generation of a transgenic pig expressing human dipeptidylpeptidase-4 (DPP-4) (Human dipeptidylpeptidase-4(DPP-4) 발현 형질전환 돼지의 생산)

  • Chung, Hak Jae;Sa, Soo Jin;Baek, Sun Young;Cho, Eun Suek;Kim, Young Shin;Hong, Jun Ki;Cho, Kyu Ho;Kim, Ji Youn;Park, Mi Ryung;Kim, Kyung Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.306-314
    • /
    • 2019
  • As dipeptidyl peptidase-4(DPP-4) inhibitors are used widely as a secondary treatment for type 2 diabetes because they tend to be well tolerated with minimal side effects, the human DPP-4(hDPP-4) gene was injected into a pig zygote through micro-injection, and 1-cell stage fertilized embryos were then transplanted surgically into the oviduct. Three pigs were fertilized with hDPP-4 genes and produced sixteen piglets, in which one male piglet was identified to be transgenic. Finally, transgenic pigs showing hDPP-4 gene expression in the tail were produced. Western blot and RT-PCR analysis confirmed that the hDPP-4 is expressed strongly in the membrane cells of the transgenic pig, and that the hDPP-4 gene appears in various tissues and tails. This suggests that the expression vector is normally expressed in transgenic pigs. These results are anticipated to be a model animal to check the endocrine function for insulin resistance that occurs in a hDPP-4 transgenic pig and to increase its value for use as a material in newly developed medicines.

Overexpression of MicroRNA-31 as a Promising Biomarker for Prognosis and Metastasis in Human Colorectal Cancer (MicroRNA-31 과발현을 이용한 대장암의 예후예측 및 전이예측 바이오마커 발굴)

  • Hur, Keun
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.705-710
    • /
    • 2016
  • Colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer-related death worldwide. Although several diagnostic and therapeutic tools have been available, CRC remains difficult to complete cure because of insufficient understanding of the molecular mechanisms underlying this disease progression. MicroRNAs (miRNAs) are small non-coding RNA molecules that strongly regulate gene expression via transcriptional and translational control mechanisms. Many crucial cellular pathways are frequently disrupted in cancer development process due to dysregulation of several miRNAs. Mir-31 functions as an oncogene that modulate expression of multiple cancer related genes. Thus, we aimed to demonstrate clinical relevance of miR-31 in human CRC. Quantitative RT-PCR analysis of miR-31 expression was performed in 175 CRC tissues and 16 normal colonic mucosa (NM). Next, we investigated clinical significances of miR-31 expression in various clinicopathologic features in CRC patients cohort. Mir-31 was significantly up-regulated in CRC tissues compared to NM. In CRC tissues, miR-31 expression level was significantly elevated in a stage-dependent manner, which was associated with poor survival in patients with CRC. High miR-31 levels in CRC tissues significantly correlated with poor prognosis (hazard ratio [HR]=2.4) as well as distant metastasis (odds ratio [OR]=2.3). In conclusion, we identified clinical significance of miR-31 expression in CRC. High miR-31 expression may be clinically able to use as a biomarker for CRC prognosis and predicting metastasis.

New surveillance concepts in food safety in meat producing animals: the advantage of high throughput 'omics' technologies - A review

  • Pfaffl, Michael W.;Riedmaier-Sprenzel, Irmgard
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.7
    • /
    • pp.1062-1071
    • /
    • 2018
  • The misuse of anabolic hormones or illegal drugs is a ubiquitous problem in animal husbandry and in food safety. The ban on growth promotants in food producing animals in the European Union is well controlled. However, application regimens that are difficult to detect persist, including newly designed anabolic drugs and complex hormone cocktails. Therefore identification of molecular endogenous biomarkers which are based on the physiological response after the illicit treatment has become a focus of detection methods. The analysis of the 'transcriptome' has been shown to have promise to discover the misuse of anabolic drugs, by indirect detection of their pharmacological action in organs or selected tissues. Various studies have measured gene expression changes after illegal drug or hormone application. So-called transcriptomic biomarkers were quantified at the mRNA and/or microRNA level by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) technology or by more modern 'omics' and high throughput technologies including RNA-sequencing (RNA-Seq). With the addition of advanced bioinformatical approaches such as hierarchical clustering analysis or dynamic principal components analysis, a valid 'biomarker signature' can be established to discriminate between treated and untreated individuals. It has been shown in numerous animal and cell culture studies, that identification of treated animals is possible via our transcriptional biomarker approach. The high throughput sequencing approach is also capable of discovering new biomarker candidates and, in combination with quantitative RT-qPCR, validation and confirmation of biomarkers has been possible. These results from animal production and food safety studies demonstrate that analysis of the transcriptome has high potential as a new screening method using transcriptional 'biomarker signatures' based on the physiological response triggered by illegal substances.

Targeting of BUB1b Gene Expression in Sentinel Lymph Node Biopsies of Invasive Breast Cancer in Iranian Female Patients

  • Mansouri, Neda;Movafagh, Abolfazl;Sayad, Arezou;Pour, Atefeh Heidary;Taheri, Mohammad;Soleimani, Shahrzad;Mirzaei, Hamid Reza;Shargh, Shohreh Alizadeh;Azargashb, Eznollah;Bazmi, Haleh;Moradi, Hossein Allah;Zandnia, Fatemeh;Hashemi, Mehrdad;Massoudi, Nilofar;Mortazavi-Tabatabaei, SA
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.317-321
    • /
    • 2016
  • Detection of micrometastasis in sentinel lymph nodes (SLNs) is a very useful tool for appropriate assessment of the clinical stage of disease in breast cancer patients. Early identification of clinically relevant disease could lead to early treatment or staging approaches for breast cancer patient. Micrometastases in SLNs of women with invasive breast cancer are of great significance in this context. In this study we examined SLN biopsies considered to have small numbers of cancerous cells by real time RT-PCR. All of the samples underwent immunohistochemical staining for cytokeratin for confirmation of the presence or absence of micrometastases. BUB1b expression assay of selected patients with and without metastasis showed overexpression in the former, but not in normal breast and lymph node tissue. Our results may be taken into account in the discussion about the merits of routine use of molecular assessment in pathogenetic studies of SLNs.

Improved DNA Extraction Method for Molecular Diagnosis from Smaller numbers of Cells

  • Oh, Seo Young;Han, Jeong Yeon;Lee, So Ra;Lee, Hoon Taek
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.46 no.3
    • /
    • pp.99-105
    • /
    • 2014
  • Isolating total DNA from small samples using traditional methods is difficult and inefficient mainly due to loss of DNA during filtration and precipitation. With advances in molecular pathology, DNA extraction from micro-dissected cells has become essential in handling clinical samples. Genomic DNA extraction using small numbers of cells can be very important to successfully PCR amplify DNA from small biopsy specimens. We compared our experimental genomic DNA extraction method (A) with two other commercially available methods: using spin columns (B), and conventional resins (C), and determined the efficacy of DNA extraction from small numbers of cells smeared on a glass slide. Approximately 50, 100, 200, 500 and 1000 cells were isolated from fine needle aspiration biopsy (FNAB) slides aspirated from histologically proven papillary thyroid carcinoma masses. DNA was extracted using the three techniques. After measuring DNA quantity, PCR amplification was performed to detect the ${\beta}$-globin and $BRAF^{V600E}$ gene mutations. DNA extracted by method (A) showed better yield than the other methods in all cell groups. With our method, a suitable amount of genomic DNA to produce amplification was extracted from as few as 50 cells, while more than 100 to 200 cells were required when methods (B) or (C) were applied. Our genomic DNA extraction method provides high quality and improved yields for molecular analysis. It will be especially useful for paucicellular clinical samples which molecular pathologists often confront when handling fine needle aspiration cytology, exfoliative cytology and small biopsy specimens.

MicroRNAs and Metastasis-related Gene Expression in Egyptian Breast Cancer Patients

  • Hafez, Mohamed M.;Hassan, Zeinab K.;Zekri, Abdel Rahman N.;Gaber, Ayman A.;Rejaie, Salem S. Al;Sayed-Ahmed, Mohamed M.;Shabanah, Othman Al
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.591-598
    • /
    • 2012
  • Aim and background: MicroRNAs (miRNAs) are a class of naturally occurring small noncoding RNAs that regulate gene expression, cell growth, differentiation and apoptosis by targeting mRNAs for translational repression or cleavage. The present study was conducted to study miRNAs in Egyptian breast cancer (BC) and their relation to metastasis, tumor invasion and apoptosis in addition to their association with the ER and PR statuses. Methods: Real Time RT-PCR was performed to identify the miRNA expression level of eight miRNAs and eight metastatic-related genes in 40 breast cancer samples and their adjacent non-neoplastic tissues. The expression levels of each miRNA relative to U6 RNA were determined using the $^{2-{\Delta}}CT$ method. Also, miRNA expression profiles of the BC and their corresponding ANT were evaluated. Results: The BC patients showed an up-regulation in miRNAs (mir-155, mir-10, mir-21 and mir-373) with an upregulation in MMP2, MMp9 and VEGF genes. We found down regulation in mir-17p, mir-126, mir-335, mir-30b and also TIMP3, TMP1 and PDCD4 genes in the cancer tissue compared to the adjacent non-neoplastic tissues. Mir -10b, mir -21, mir-155 and mir373 and the metastatic genes MMP2, MMP9 and VEGF were significantly associated with an increase in tumor size (P < 0.05). No significant difference was observed between any of the studied miRNAs regarding lymph node metastasis. Mir-21 was significantly over-expressed in ER-/PR-cases. Conclusion: Specific miRNAs (mir-10, mir-21, mir-155, mir-373, mir-30b, mir-126, mir-17p, mir-335) are associated with tumor metastasis and other clinical characteristics for BC, facilitating identification of individuals who are at risk.

Quercetin Enhances Cisplatin Sensitivity of Human Osteosarcoma Cells by Modulating microRNA-217-KRAS Axis

  • Zhang, Xian;Guo, Qinggong;Chen, Jingtao;Chen, Zhaohui
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.638-642
    • /
    • 2015
  • Quercetin can suppress osteosarcoma cell growth and metastasis. However, other effects of quercetin on osteosarcoma remain largely unknown. This research aims to evaluate the effects of quercetin in combination with cisplatin as treatment for osteosarcoma and investigate its regulatory mechanism. Cell viability and apoptosis in 143B cell line were determined after treatment with quercetin and/or cisplatin. RT-PCR and Western blot analysis were performed to determine the RNA or protein expression levels. Moreover, transwell assay was used to evaluate metastasis. Furthermore, rescue experiments were performed to investigate the potential regulatory mechanism of the treatment. Results showed that quercetin with concentration that was equal to or greater than $10{\mu}M$ inhibited 143B proliferation, while $5{\mu}M$ quercetin enhanced the cisplatin sensitivity of 143B cells. Expression of miR-217 was upregulated after quercetin and/or cisplatin treatment, while its target KRAS was downregulated both at mRNA and protein levels. MiR-217 knockdown led to the loss of enhanced cisplatin sensitivity while miR-217 overexpression showed the opposite effects, indicating that quercetin regulated cisplatin sensitivity by modulating the miR-217-KRAS axis. In conclusion, $5{\mu}M$ quercetin enhanced the cisplatin sensitivity by modulating the miR-217-KRAS axis. This finding suggests that quercetin may be administered with cisplatin to improve the treatment for osteosarcoma.

Single Nucleotide Polymorphisms in miR-149 (rs2292832) and miR-101-1 (rs7536540) Are Not Associated with Hepatocellular Carcinoma in Thai Patients with Hepatitis B Virus Infection

  • Pratedrat, Pornpitra;Sopipong, Watanyoo;Makkoch, Jarika;Praianantathavorn, Kesmanee;Chuaypen, Natthaya;Tangkijvanich, Pisit;Payungporn, Sunchai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6457-6461
    • /
    • 2015
  • MicroRNAs directly and indirectly influence many biological processes such as apoptosis, cell maintenance, and immune responses, impacting on tumor genesis and metastasis. They modulate gene expression at the posttranscriptional level and are associated with progression of liver disease. Hepatocellular carcinoma (HCC) is a cancer which mostly occurs in males. There are many factors affect HCC development, for example, hepatitis B virus (HBV), hepatitis C virus (HCV) and human immunodeficiency virus (HIV), co-infection, environmental factors including alcohol, aflatoxin consumption and host-related factors such as age, gender immune response, microRNA and single nucleotide polymorphisms (SNPs). Chronic infection with the hepatitis B virus is the major factor leading to HCC progression since it causes the liver injury. At present, there are many reports regarding the association of SNPs on miRNAs and the HCC progression. In this research, we investigated the role of miR-149 (rs2292832) and miR-101-1 (rs7536540) with HCC progression in Thai population. The study included 289 Thai subjects including 104 HCC patients, 90 patients with chronic hepatitis B virus infection (CHB) and 95 healthy control subjects. The allele and genotype of rs2292832 and rs7536540 polymorphisms were determined by TaqMan real-time PCR assay. Our results revealed no significant association between miR-149 (rs2292832) and miR-101-1 (rs7536540) and the risk of HCC in our Thai population. However, this research is the first study of miR-149 (rs2292832) and miR-101-1 (rs7536540) in HCC in Thai populations and the results need to be confirmed with a larger population.

Associations Between Three Common MicroRNA Polymorphisms and Hepatocellular Carcinoma Risk in Chinese

  • Hao, Yu-Xia;Wang, Jun-Ping;Zhao, Long-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6601-6604
    • /
    • 2013
  • Aim: Associations between polymorphisms in miR-146aG>C, miR-196a2C>T and miR-499A>G and risk of HCC, and interaction with HBV infection in a Chinese population, were the target of the present research. Methods: The duplex polymerase-chain-reaction with confronting-two-pair primers (PCR-RFLP) was performed to determine the genotypes of the miR-146aG>C, miR-196a2C>T and miR-499A>G genotypes. Associations of polymorphisms with the risk of HCC were estimated by conditional logistic regression analysis. Results: Drinking, family history of cancer, HBsAg and HCV were risk factors for HCC. Multivariate regression analyses showed that subjects carrying the miR-196a2 CC genotype had significantly increased risk of HCC, with an adjusted OR (95% CI) of 2.18 (1.23-3.80). In addition, cases carrying the miR-196a2 C allele had a 1.64-fold increase in the risk for HCC (95%CI=1.03-2.49). The miR-196a2 CT and TT genotypes greatly significantly increased the risk of HCC in subjects with HBV infection, with adjusted ORs (95% CI) of 2.02 (1.12-3.68) and 2.69 (1.28-5.71), respectively. Conclusion: Our results demonstrate that miR-196a2 CC genotype and C allele have an important role in HCC risk in Chinese, especially in patients with HBV infection.

Effects of MicroRNA-106 on Proliferation of Gastric Cancer Cell through Regulating p21 and E2F5

  • Yao, Yong-Liang;Wu, Xiao-Yang;Wu, Jian-Hong;Gu, Tao;Chen, Ling;Gu, Jin-Hua;Liu, Yun;Zhang, Qing-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2839-2843
    • /
    • 2013
  • Objective: To investigate the effects of miR-106b on malignant characteristics of gastric cancer cells, and explore possible mechanisms. Methods: Expression of miR-106b, p21 and E2F was determined by real-time PCR. Transfection with miR-106b mimics was conducted, and gastric cancer cells with miR-106b overexpression were obtained. Cells transfected with mimic mutants and those without transfection served as negative and blank controls, respectively. Flow cytometry and transwell assays were adopted to detect the effects of miR-106b overexpression on cell cycle, migration and invasion of gastric cancer cells. Results:. The expression of miR- 106b in gastric cancer cells was significantly higher than that in normal gastric mucosa cells. Furthermore, the expression level of miR-106b rose according to the degree of malignacy among the three GC cell strains (MKN- 45 > SGC-7901 > MKN-28). Overexpression of miR-106b shortened the G0/G1 phase and accelerated cell cycle progression, while reducing p21 and E2F5, without any significant effects on the capacity for migration and invasion of gastric cancer cells. Conclusions: miR-106b may promote cell cycling of gastric cancer cells through regulation of p21 and E2F5 target gene expression.