Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.6.705

Overexpression of MicroRNA-31 as a Promising Biomarker for Prognosis and Metastasis in Human Colorectal Cancer  

Hur, Keun (Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University)
Publication Information
Journal of Life Science / v.26, no.6, 2016 , pp. 705-710 More about this Journal
Abstract
Colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer-related death worldwide. Although several diagnostic and therapeutic tools have been available, CRC remains difficult to complete cure because of insufficient understanding of the molecular mechanisms underlying this disease progression. MicroRNAs (miRNAs) are small non-coding RNA molecules that strongly regulate gene expression via transcriptional and translational control mechanisms. Many crucial cellular pathways are frequently disrupted in cancer development process due to dysregulation of several miRNAs. Mir-31 functions as an oncogene that modulate expression of multiple cancer related genes. Thus, we aimed to demonstrate clinical relevance of miR-31 in human CRC. Quantitative RT-PCR analysis of miR-31 expression was performed in 175 CRC tissues and 16 normal colonic mucosa (NM). Next, we investigated clinical significances of miR-31 expression in various clinicopathologic features in CRC patients cohort. Mir-31 was significantly up-regulated in CRC tissues compared to NM. In CRC tissues, miR-31 expression level was significantly elevated in a stage-dependent manner, which was associated with poor survival in patients with CRC. High miR-31 levels in CRC tissues significantly correlated with poor prognosis (hazard ratio [HR]=2.4) as well as distant metastasis (odds ratio [OR]=2.3). In conclusion, we identified clinical significance of miR-31 expression in CRC. High miR-31 expression may be clinically able to use as a biomarker for CRC prognosis and predicting metastasis.
Keywords
Biomarker; colorectal cancer; metastasis; MicroRNA-31; prognosis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu, C. J., Kao, S. Y., Tu, H. F., Tsai, M. M., Chang, K. W. and Lin, S. C. 2010. Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis. 16, 360-364.   DOI
2 Liu, C. J., Tsai, M. M., Hung, P. S., Kao, S. Y., Liu, T. Y., Wu, K. J., Chiou, S. H., Lin, S. C. and Chang, K. W. 2010. miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res. 70, 1635-1644.   DOI
3 Siow, M. Y., Ng, L. P., Vincent-Chong, V. K., Jamaludin, M., Abraham, M. T., Abdul Rahman, Z. A., Kallarakkal, T. G., Yang, Y. H., Cheong, S. C. and Zain, R. B. 2014. Dysregulation of miR-31 and miR-375 expression is associated with clinical outcomes in oral carcinoma. Oral Dis. 20, 345-351.   DOI
4 Lynam-Lennon, N., Reynolds, J. V., Marignol, L., Sheils, O. M., Pidgeon, G. P. and Maher, S. G. 2012. MicroRNA-31 modulates tumour sensitivity to radiation in oesophageal adenocarcinoma. J. Mol. Med (Berl). 90, 1449-1458.   DOI
5 Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., Furth, E. E., Lee, W. M., Enders, G. H., Mendell, J. T. and Thomas-Tikhonenko, A. 2006. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat. Genet. 38, 1060-1065.   DOI
6 Fuse, M., Kojima, S., Enokida, H., Chiyomaru, T., Yoshino, H., Nohata, N., Kinoshita, T., Sakamoto, S., Naya, Y., Nakagawa, M., Ichikawa, T. and Seki, N. 2012. Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on microRNA expression signature in prostate cancer. J. Hum. Genet. 57, 691-699.   DOI
7 Laurila, E. M. and Kallioniemi, A. 2013. The diverse role of miR-31 in regulating cancer associated phenotypes. Genes Chromosomes Cancer 52, 1103-1113.   DOI
8 Hur, K., Toiyama, Y., Okugawa, Y., Ide, S., Imaoka, H., Boland, C. R. and Goel, A. 2015. Circulating microRNA-203 predicts prognosis and metastasis in human colorectal cancer. Gut. doi: 10.1136/gutjnl-2014-308737. [Epub ahead of print]   DOI
9 Hur, K., Toiyama, Y., Schetter, A. J., Okugawa, Y., Harris, C. C., Boland, C. R. and Goel, A. 2015. Identification of a metastasis-specific MicroRNA signature in human colorectal cancer. J. Natl. Cancer Inst. 107, 1-11.
10 Hur, K., Toiyama, Y., Takahashi, M., Balaguer, F., Nagasaka, T., Koike, J., Hemmi, H., Koi, M., Boland, C. R. and Goel, A. 2013. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut 62, 1315-1326.   DOI
11 Lewis, B. P., Burge, C. B. and Bartel, D. P. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20.   DOI
12 Li, T., Luo, W., Liu, K., Lv, X. and Xi, T. 2015. miR-31 promotes proliferation of colon cancer cells by targeting E2F2. Biotechnol. Lett. 37, 523-532.   DOI
13 Asangani, I. A., Rasheed, S. A., Nikolova, D. A., Leupold, J. H., Colburn, N. H., Post, S. and Allgayer, H. 2008. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128-2136.   DOI
14 Augoff, K., McCue, B., Plow, E. F. and Sossey-Alaoui, K. 2012. miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol. Cancer 11, 5.   DOI
15 Bhatnagar, N., Li, X., Padi, S. K., Zhang, Q., Tang, M. S. and Guo, B. 2010. Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death Dis. 1, e105.   DOI
16 Cottonham, C. L., Kaneko, S. and Xu, L. 2010. miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J. Biol. Chem. 285, 35293-35302.   DOI
17 Creighton, C. J., Fountain, M. D., Yu, Z., Nagaraja, A. K., Zhu, H., Khan, M., Olokpa, E., Zariff, A., Gunaratne, P. H., Matzuk, M. M. and Anderson, M. L. 2010. Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res. 70, 1906-1915.   DOI
18 Bipat, S., van Leeuwen, M. S., Ijzermans, J. N., Comans, E. F., Planting, A. S., Bossuyt, P. M., Greve, J. W. and Stoker, J. 2007. Evidence-base guideline on management of colorectal liver metastases in the Netherlands. Neth. J. Med. 65, 5-14.
19 Calin, G. A. and Croce, C. M. 2006. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857-866.   DOI
20 Cekaite, L., Rantala, J. K., Bruun, J., Guriby, M., Agesen, T. H., Danielsen, S. A., Lind, G. E., Nesbakken, A., Kallioniemi, O., Lothe, R. A. and Skotheim, R. I. 2012. MiR-9, -31, and -182 deregulation promote proliferation and tumor cell survival in colon cancer. Neoplasia 14, 868-879.   DOI
21 Slaby, O., Svoboda, M., Fabian, P., Smerdova, T., Knoflickova, D., Bednarikova, M., Nenutil, R. and Vyzula, R. 2007. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 72, 397-402.
22 Wang, S., Li, Q., Wang, K., Dai, Y., Yang, J., Xue, S., Han, F., Zhang, Q., Liu, J. and Wu, W. 2013. Decreased expression of microRNA-31 associates with aggressive tumor progression and poor prognosis in patients with bladder cancer. Clin. Transl. Oncol. 15, 849-854.   DOI
23 Weizman, A. V. and Nguyen, G. C. 2010. Colon cancer screening in 2010: an up-date. Minerva. Gastroenterol. Dietol. 56, 181-188.
24 Xu, X. M., Qian, J. C., Deng, Z. L., Cai, Z., Tang, T., Wang, P., Zhang, K. H. and Cai, J. P. 2012. Expression of miR-21, miR-31, miR-96 and miR-135b is correlated with the clinical parameters of colorectal cancer. Oncol. Lett. 4, 339-345.
25 Yamakuchi, M., Lotterman, C. D., Bao, C., Hruban, R. H., Karim, B., Mendell, J. T., Huso, D. and Lowenstein, C. J. 2010. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc. Natl. Acad. Sci. USA 107, 6334-6339.   DOI
26 Zheng, W., Liu, Z., Zhang, W. and Hu, X. 2015. miR-31 functions as an oncogene in cervical cancer. Arch. Gynecol. Obstet. 292, 1083-1089.   DOI
27 Schee, K., Boye, K., Abrahamsen, T. W., Fodstad, O. and Flatmark, K. 2012. Clinical relevance of microRNA miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-145 in colorectal cancer. BMC Cancer 12, 505.   DOI
28 Siegel, R. L., Miller, K. D. and Jemal, A. 2016. Cancer statistics, 2016. CA. Cancer J. Clin. 66, 7-30.   DOI
29 Sossey-Alaoui, K., Downs-Kelly, E., Das, M., Izem, L., Tubbs, R. and Plow, E. F. 2011. WAVE3, an actin remodeling protein, is regulated by the metastasis suppressor microRNA, miR-31, during the invasion-metastasis cascade. Int. J. Cancer 129, 1331-1343.   DOI
30 Sun, F., Wang, J., Pan, Q., Yu, Y., Zhang, Y., Wan, Y., Wang, J., Li, X. and Hong, A. 2009. Characterization of function and regulation of miR-24-1 and miR-31. Biochem. Biophys. Res. Commun. 380, 660-665.
31 Veerla, S., Panagopoulos, I., Jin, Y., Lindgren, D. and Hoglund, M. 2008. Promoter analysis of epigenetically controlled genes in bladder cancer. Genes Chromosomes Cancer 47, 368-378.   DOI
32 Valastyan, S., Reinhardt, F., Benaich, N., Calogrias, D., Szasz, A. M., Wang, Z. C., Brock, J. E., Richardson, A. L. and Weinberg, R. A. 2009. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137, 1032-1046.   DOI
33 Wszolek, M. F., Rieger-Christ, K. M., Kenney, P. A., Gould, J. J., Silva Neto, B., Lavoie, A. K., Logvinenko, T., Libertino, J. A. and Summerhayes, I. C. 2011. A MicroRNA expression profile defining the invasive bladder tumor phenotype. Urol. Oncol. 29, 794-801.   DOI