Browse > Article
http://dx.doi.org/10.7314/APJCP.2012.13.2.591

MicroRNAs and Metastasis-related Gene Expression in Egyptian Breast Cancer Patients  

Hafez, Mohamed M. (Collage of Pharmacy, Pharmacology Department, King Saud University)
Hassan, Zeinab K. (Cancer Biology Department, National Cancer Institute, Cairo University)
Zekri, Abdel Rahman N. (Cancer Biology Department, National Cancer Institute, Cairo University)
Gaber, Ayman A. (Cancer Biology Department, National Cancer Institute, Cairo University)
Rejaie, Salem S. Al (Collage of Pharmacy, Pharmacology Department, King Saud University)
Sayed-Ahmed, Mohamed M. (Collage of Pharmacy, Pharmacology Department, King Saud University)
Shabanah, Othman Al (Collage of Pharmacy, Pharmacology Department, King Saud University)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.13, no.2, 2012 , pp. 591-598 More about this Journal
Abstract
Aim and background: MicroRNAs (miRNAs) are a class of naturally occurring small noncoding RNAs that regulate gene expression, cell growth, differentiation and apoptosis by targeting mRNAs for translational repression or cleavage. The present study was conducted to study miRNAs in Egyptian breast cancer (BC) and their relation to metastasis, tumor invasion and apoptosis in addition to their association with the ER and PR statuses. Methods: Real Time RT-PCR was performed to identify the miRNA expression level of eight miRNAs and eight metastatic-related genes in 40 breast cancer samples and their adjacent non-neoplastic tissues. The expression levels of each miRNA relative to U6 RNA were determined using the $^{2-{\Delta}}CT$ method. Also, miRNA expression profiles of the BC and their corresponding ANT were evaluated. Results: The BC patients showed an up-regulation in miRNAs (mir-155, mir-10, mir-21 and mir-373) with an upregulation in MMP2, MMp9 and VEGF genes. We found down regulation in mir-17p, mir-126, mir-335, mir-30b and also TIMP3, TMP1 and PDCD4 genes in the cancer tissue compared to the adjacent non-neoplastic tissues. Mir -10b, mir -21, mir-155 and mir373 and the metastatic genes MMP2, MMP9 and VEGF were significantly associated with an increase in tumor size (P < 0.05). No significant difference was observed between any of the studied miRNAs regarding lymph node metastasis. Mir-21 was significantly over-expressed in ER-/PR-cases. Conclusion: Specific miRNAs (mir-10, mir-21, mir-155, mir-373, mir-30b, mir-126, mir-17p, mir-335) are associated with tumor metastasis and other clinical characteristics for BC, facilitating identification of individuals who are at risk.
Keywords
Breast cancer; MiRNA; gene expression; metastasis risk; Egypt;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kulshreshtha R, Ferracin M, Wojcik SE, et al. (2007). A microRNA signature of hypoxia. Mol Cell Biol, 27, 1859-67.   DOI   ScienceOn
2 Lee Y, Ahn C, Han J, et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425, 415-9.   DOI   ScienceOn
3 Lee Y, Kim M, Han J, et al (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 23, 4051-60.   DOI
4 Leupold JH, Yang HS, Colburn NH, et al (2007). Tumor suppressor Pdcd4 inhibits invasion/intravasation and regulates urokinase receptor (u-PAR) gene expression via Sp-transcription factors. Oncogene, 26, 4550-62.   DOI
5 Li J, Donath S, Li Y, et al (2010). miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet, 6, 1000795.   DOI
6 Li T, Cao H, Zhuang J, et al (2010). Identification of miR- 130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin Chim Acta, 412, 66-70.
7 Liu G, Huang Y, Lu X, et al (2010). Identification and characteristics of microRNAs with altered expression patterns in a rat model of abdominal aortic aneurysms. Tohoku J Exp Med, 222, 187-93.   DOI   ScienceOn
8 Lu Z, Liu M, Stribinskis V, et al (2008). MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene, 27, 4373-9.   DOI
9 Lund E, Guttinger S, Calado A, et al (2004). Nuclear export of microRNA precursors. Science, 303, 95-8.   DOI   ScienceOn
10 Ma L, Teruya-Feldstein J, Weinberg RA (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449, 682-8.   DOI
11 Mayr C, Hemann MT, Bartel DP (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science, 315, 1576-9.   DOI
12 Meng F, Henson R, Wehbe-Janek H, et al (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 133, 647-58.   DOI   ScienceOn
13 Mulder JW, Kruyt PM, Sewnath M, et al (1994). Colorectal cancer prognosis and expression of exon-v6-containing CD44 proteins. Lancet, 344, 1470-2.   DOI   ScienceOn
14 Negrini M, Calin GA (2008). Breast cancer metastasis: a microRNA story. Breast Cancer Res, 10, 203.   DOI
15 Nieves BJ, D'Amore PA, Bryan BA (2009). The function of vascular endothelial growth factor. Biofactors, 35, 332-7.   DOI
16 Parkin DM, Bray F, Ferlay J, et al (2005). Global cancer statistics, 2002. CA Cancer J Clin, 55, 74-108.   DOI   ScienceOn
17 Parkin DM WS, Ferlay J, Teppo L (2002). Cancer incidence in five continents. Volume VIII. IARC Sci Publ, Lyon.
18 Perry SV (2001). Vertebrate tropomyosin: distribution, properties and function. J Muscle Res Cell Motil, 22, 5-49.   DOI
19 Pyke C, Ralfkiaer E, Huhtala P, et al (1992). Localization of messenger RNA for Mr 72,000 and 92,000 type IV collagenases in human skin cancers by in situ hybridization." Cancer Res, 52, 1336-41.
20 Raval GN, Bharadwaj S, Levine EA, et al (2003). Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Oncogene, 22, 6194-203.   DOI   ScienceOn
21 Reis PP, Tomenson M, Cervigne NK, et al (2010). Programmed cell death 4 loss increases tumor cell invasion and is regulated by miR-21 in oral squamous cell carcinoma. Mol Cancer, 9, 238.   DOI
22 Sampson VB, Rong NH, Han J, et al (2007). MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res, 67, 9762-70.   DOI
23 Schmid T, Jansen AP, Baker AR, et al (2008). Translation inhibitor Pdcd4 is targeted for degradation during tumor promotion. Cancer Res, 68, 1254-60.   DOI
24 Schmittgen TD, Jiang J, Liu Q, et al (2004). A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res, 32, 43.   DOI
25 Sieuwerts AM, Look MP, Meijer-van Gelder ME, et al (2006). Which cyclin E prevails as prognostic marker for breast cancer? Results from a retrospective study involving 635 lymph node-negative breast cancer patients. Clin Cancer Res, 12, 3319-28.   DOI   ScienceOn
26 Smid M, Wang Y, Zhang Y, et al (2008). Subtypes of breast cancer show preferential site of relapse. Cancer Res, 68, 3108-14.   DOI
27 Talvensaari-Mattila A, Paakko P, Hoyhtya M, et al (1998). Matrix metalloproteinase-2 immunoreactive protein: a marker of aggressiveness in breast carcinoma. Cancer, 83, 1153-62.   DOI   ScienceOn
28 Tavazoie SF, Alarcon C, Oskarsson T, et al (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451, 147-52.   DOI
29 Toi M, Ishigaki S, Tominaga T (1998). Metalloproteinases and tissue inhibitors of metalloproteinases. Breast Cancer Res Treat, 52, 113-24.   DOI   ScienceOn
30 Turpeenniemi-Hujanen T (2005). Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie, 87, 287-97.   DOI
31 Valencia-Sanchez MA, Liu J, Hannon GJ, et al (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev, 20, 515-24.   DOI   ScienceOn
32 Vandesompele J, De Preter K, Pattyn F, et al (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 3, 34-?.
33 Vigorito E, Perks KL, Abreu-Goodger C, et al (2007). microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity, 27, 847-59.   DOI
34 Vikhreva PN, Shepelev MV, Korobko EV, et al (2010). Pdcd4 tumor suppressor: properties, functions, and their application to oncology. Mol Gen Mikrobiol Virusol, ?, 3-11 (in Russian).
35 Volinia S, Calin GA, Liu CG, et al (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA, 103, 2257-61.   DOI   ScienceOn
36 Wang W, Zhao J, Wang H, et al (2010). Programmed cell death 4 (PDCD4) mediates the sensitivity of gastric cancer cells to TRAIL-induced apoptosis by down-regulation of FLIP expression. Exp Cell Res, 316, 2456-64.   DOI
37 Wang WQ, Zhang H, Wang HB, et al (2010). Programmed cell death 4 (PDCD4) enhances the sensitivity of gastric cancer cells to TRAIL-induced apoptosis by inhibiting the PI3K/ Akt signaling pathway. Mol Diagn Ther, 14, 155-61.   DOI
38 Wu W, He JT, Ruan JD, et al (2008). Expression of MMP-2, MMP-9 and collagen type IV and their relationship in colorectal carcinomas. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 24, 908-9 (in Chinese).
39 Bartels CL, Tsongalis GJ (2009). MicroRNAs: novel biomarkers for human cancer. Clin Chem, 55, 623-31.   DOI
40 Asangani IA, Rasheed SA, Nikolova DA, et al (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27, 2128-36.   DOI   ScienceOn
41 Borchert GM, Lanier W, Davidson BL (2006). RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol, 13, 1097-101.   DOI   ScienceOn
42 Boxler S, Djonov V, Kessler TM, et al (2010). Matrix Metalloproteinases and Angiogenic Factors. Predictors of Survival after Radical Prostatectomy for Clinically Organ- Confined Prostate Cancer? Am J Pathol, ?, ?-?.   DOI
43 Burg-Roderfeld M, Roderfeld M, Wagner S, et al (2007). MMP- 9-hemopexin domain hampers adhesion and migration of colorectal cancer cells. Int J Oncol, 30, 985-92.
44 Calin GA, Ferracin M, Cimmino A, et a. (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med, 353, 1793- 801.   DOI
45 Chan DT, Poon WS, Chan YL, et al (2005). Temozolomide in the treatment of recurrent malignant glioma in Chinese patients. Hong Kong Med J, 11, 452-6.
46 Chang TC, Wentzel EA, Kent OA, et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell, 26, 745-52.   DOI   ScienceOn
47 Chen LH, Chiou GY, Chen YW, et al (2010). microRNA and aging: a novel modulator in regulating the aging network. Ageing Res Rev, 9, 59-66.   DOI
48 Yu K, Lee CH, Tan PH, et al (2004). A molecular signature of the Nottingham prognostic index in breast cancer. Cancer Res, 64, 2962-8.   DOI
49 Zhang W, Dahlberg JE, Tam W (2007). MicroRNAs in tumorigenesis: a primer. Am J Pathol, 171, 728-38.   DOI
50 Zhu S, Si ML, Wu H, et al (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem, 282, 14328-36.   DOI   ScienceOn
51 Cheng AM, Byrom MW, Shelton J, et al (2005). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis."Nucleic Acids Res, 33, 1290-7.   DOI   ScienceOn
52 Cho WC (2007). OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer, 6, 60.   DOI   ScienceOn
53 Chu D, Zhang Z, Li Y, et al (2011). Matrix metalloproteinase-9 is associated with disease-free survival and overall survival in patients with gastric cancer. Int J Cancer, 129, 887-95.   DOI
54 Cmarik JL, Min H, Hegamyer G, et al (1999). Differentially expressed protein Pdcd4 inhibits tumor promoter-induced neoplastic transformation. Proc Natl Acad Sci USA, 96, 14037-42.   DOI
55 Corney DC, Nikitin AY (2008). MicroRNA and ovarian cancer. Histol Histopathol, 23, 1161-9.
56 Croce CM (2009). Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet, 10, 704-14.   DOI
57 Curran S, Murray GI (2000). Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis." Eur J Cancer, 36, 1621-30.   DOI   ScienceOn
58 Esquela-Kerscher A and Slack FJ (2006). "Oncomirs - microRNAs with a role in cancer." Nat Rev Cancer, 6, 259-69.   DOI   ScienceOn
59 Fassina G, Ferrari N, Brigati C, et al. (2000). Tissue inhibitors of metalloproteases: regulation and biological activities. Clin Exp Metastasis, 18, 111-20.   DOI
60 Frankel LB, Christoffersen NR, Jacobsen A, et al (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem, 283, 1026-33.   DOI   ScienceOn
61 Gregory RI, Shiekhattar R (2005). MicroRNA biogenesis and cancer. Cancer Res, 65, 3509-12.   DOI   ScienceOn
62 Gomez DE, Alonso DF, Yoshiji H, et al. (1997). Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol, 74, 111-22.
63 Hicklin DJ, Ellis LM (2005). Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol, 23, 1011-27.   DOI
64 Huang Q, Gumireddy K, Schrier M, et al (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol, 10, 202-10.   DOI
65 Iorio MV, Ferracin M, Liu CG, et al (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 65, 7065-70.   DOI   ScienceOn
66 Iorio MV, Visone R, Di Leva G, et al (2007). MicroRNA signatures in human ovarian cancer. Cancer Res, 67, 8699- 707.   DOI   ScienceOn
67 Jemal A, Siegel R, Ward E, et al (2009). Cancer statistics, 2009. CA Cancer J Clin, 59, 225-49.   DOI   ScienceOn
68 Jiang J, Lee EJ, Gusev Y, et al (2005). Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res, 33, 5394-403.   DOI
69 Jones JL, Glynn P, Walker RA (1999). Expression of MMP-2 and MMP-9, their inhibitors, and the activator MT1-MMP in primary breast carcinomas. J Pathol, 189, 161-8.   DOI