• 제목/요약/키워드: metric space

검색결과 733건 처리시간 0.023초

USUAL FUZZY METRIC SPACE AND FUZZY HEINE-BOREL THEOREM

  • 최정열;윤은호;문주란
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.360-365
    • /
    • 1995
  • We shall define the usual fuzzy distance between two fuzzy points in R, the set of all real, numbers, using the usual distance between two points in R. Applying the notion of this usual fuzzy distance, we construct the usual fuzzy topology for R, introduce the notions of lower, stationary and upper cover and obtain the fuzzy Heine-Borel theorem.

  • PDF

단사진 해석기법을 이용한 평면좌표 결정에 관한 연구 (A Study on the Determination of Plane Coordinates Using Single Photo Method)

  • 유복모;박운용;조강연;이용희
    • 한국측량학회지
    • /
    • 제5권2호
    • /
    • pp.37-46
    • /
    • 1987
  • 단사진을 이용한 측량은 교통, 산업, 산림, 범죄수사 및 일상생활에서 많은 활용면이 있으므로 본 논문에서는 이와같은 단사진 측량방법중 공간후방교회법(Space Resection)을 이용하는 방법과 2차원 사영변환을 이용하는 방법으로 나누어 해석기법을 제시하였다. 또한 측량용 비측량용 사진기를 사용한 단사진의 정확도를 비교분석 하였으며, 정확도를 향상시킬 수 있는 최적의 상태를 알기 위하여 기준점 수 및 배치형태를 변화시키면서 좌표 및 길이의 오차에 대하여 분석하였다. 그 결과 초점거리가 긴 측량용사진기 Wild P31이나 중형사진기 ASAHI PENTAX 6$\times$7의 경우 기준점 수 및 배치형태가 오차에 미치는 영향이 작았으나 초점거리가 짧은 비측량용 사진기 NIKON FM2는 기준점수 및 배치형태가 오차에 미치는 영향이 컸다. 따라서 이러한 단점을 극복하고 오차가 수렴하기 위해서는 최소한 기준점수 6점 이상을 측량대상 지역에 고루 분포시키고 또한 측량대상물을 촬영축에 직각방향으로 배치하여야 한다는 것을 알 수 있었다.

  • PDF

비교정 영상으로부터 왜곡을 제거한 3 차원 재구성방법 (3D reconstruction method without projective distortion from un-calibrated images)

  • 김형률;김호철;오장석;구자민;김민기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.391-394
    • /
    • 2005
  • In this paper, we present an approach that is able to reconstruct 3 dimensional metric models from un-calibrated images acquired by a freely moved camera system. If nothing is known of the calibration of either camera, nor the arrangement of one camera which respect to the other, then the projective reconstruction will have projective distortion which expressed by an arbitrary projective transformation. The distortion on the reconstruction is removed from projection to metric through self-calibration. The self-calibration requires no information about the camera matrices, or information about the scene geometry. Self-calibration is the process of determining internal camera parameters directly from multiply un-calibrated images. Self-calibration avoids the onerous task of calibrating cameras which needs to use special calibration objects. The root of the method is setting a uniquely fixed conic(absolute quadric) in 3D space. And it can make possible to figure out some way from the images. Once absolute quadric is identified, the metric geometry can be computed. We compared reconstruction image from calibrated images with the result by self-calibration method.

  • PDF

Automatic Method for Contrast Enhancement of Natural Color Images

  • Lal, Shyam;Narasimhadhan, A. V.;Kumar, Rahul
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1233-1243
    • /
    • 2015
  • The contrast enhancement is great challenge in the image processing when images are suffering from poor contrast problem. Therefore, in order to overcome this problem an automatic method is proposed for contrast enhancement of natural color images. The proposed method consist of two stages: in first stage lightness component in YIQ color space is normalized by sigmoid function after the adaptive histogram equalization is applied on Y component and in second stage automatic color contrast enhancement algorithm is applied on output of the first stage. The proposed algorithm is tested on different NASA color images, hyperspectral color images and other types of natural color images. The performance of proposed algorithm is evaluated and compared with the other existing contrast enhancement algorithms in terms of colorfulness metric and color enhancement factor. The higher values of colorfulness metric and color enhancement factor imply that the visual quality of the enhanced image is good. Simulation results demonstrate that proposed algorithm provides higher values of colorfulness metric and color enhancement factor as compared to other existing contrast enhancement algorithms. The proposed algorithm also provides better visual enhancement results as compared with the other existing contrast enhancement algorithms.

비측량용(非測量用) 사진(寫眞)에서의 과대오차(過大誤差) 검출(檢出) 및 외부표정요소(外部標定要素) 결정(決定) (Gross Error Detection and Determination of Exterior Orientation Elements in Non-metric Photos)

  • 유복모;손덕재;박홍기
    • 대한토목학회논문집
    • /
    • 제7권4호
    • /
    • pp.125-132
    • /
    • 1987
  • 사진측량(寫眞測量)에서 이용되는 번들조정(調整)은 공선조건(共線條件)을 기초로 하며, 많은 비지형(非地形)분야에서 이용되고 있다. 그러나 비측량용(非測量用)사진기의 경우 지표(指標)가 없고 내부(內部) 및 외부표정요소(外部標定要素)의 초기근사값을 모르기 때문에, 이를 필요로 하는 번들조정(調整)에는 적용할 수 없다. 상좌표(像座標)로 부터 절대좌표(絶對座標)가 근사값을 요구하지 않고 직접변환되는 DLT(direct linear transformation) 프로그램이 Marzan과 Karara에 의해 개발되었다. 본(本) 논문(論文)에서는, 비측량용(非測量用)사진기에 의한 근거리사진측량(近距離寫眞測量)의 정확도(正確度)를 향상시키기 위해 DLT프로그램을 수정하였다. 수정된 프로그램에는 과대오차(過大誤差)의 검출(檢出) 및 외부표정요소(外部標定要素)의 계산과정을 포함시켰으며, 반복계산수를 증가시켰다.

  • PDF

Blind Quality Metric via Measurement of Contrast, Texture, and Colour in Night-Time Scenario

  • Xiao, Shuyan;Tao, Weige;Wang, Yu;Jiang, Ye;Qian, Minqian.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.4043-4064
    • /
    • 2021
  • Night-time image quality evaluation is an urgent requirement in visual inspection. The lighting environment of night-time results in low brightness, low contrast, loss of detailed information, and colour dissonance of image, which remains a daunting task of delicately evaluating the image quality at night. A new blind quality assessment metric is presented for realistic night-time scenario through a comprehensive consideration of contrast, texture, and colour in this article. To be specific, image blocks' color-gray-difference (CGD) histogram that represents contrast features is computed at first. Next, texture features that are measured by the mean subtracted contrast normalized (MSCN)-weighted local binary pattern (LBP) histogram are calculated. Then statistical features in Lαβ colour space are detected. Finally, the quality prediction model is conducted by the support vector regression (SVR) based on extracted contrast, texture, and colour features. Experiments conducted on NNID, CCRIQ, LIVE-CH, and CID2013 databases indicate that the proposed metric is superior to the compared BIQA metrics.