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Abstract. The aim of this paper is to introduce the notion of ε-compatible maps and

obtain some common fixed point theorems. Also, our results generalize some well known

fixed point theorems.

1. Introduction and Preliminaries

Stephen Banach in 1922, formulated a classical theorem, in nonlinear functional
analysis, which became known as the Banach contraction principle. This theorem
states that if a self-mapping f of a complete metric space (X, d) satisfies the con-
dition

d(fx, fy) ≤ kd(x, y), 0 ≤ k < 1

for each x, y ∈ X, then f has a unique fixed point, that is, there exists a unique z
in X such that f(z) = z.

This classical theorem is used to determine the existence and uniqueness of a
fixed point for a contraction map and became an excellent tool to compute the
fixed point through iteration process. This theorem also gave birth to many other
notable fixed point theorems such as Edelstein(1962), Kannan(1968), Ciric(1974),
Nudler(1969) and, etc. The fixed theorems which give the existence of fixed point
are widely used in physics to determine the steady state temperature distribution,
to analyse neutron transport, in biology to analyse epidemiological parameters, in
economical analysis, and also in computer sciences.

Every fixed point theorem of a self-mapping f of a metric space (X, d) can also
be considered as a common fixed theorem of f and the identity mapping on X.
Goebel in 1968 obtained a coincidence point theorem by replacing the identity map
in Banach contraction principle with a function g of X, in such a way that
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Theorem 1.1. Let A be an arbitrary set and X be a metric space with the metric
d. Suppose that f, g are two mappings defined on the set A with the values in X. If
f(A) ⊆ g(A), g(A) is a complete subspace of X and for all x, y ∈ A

d(fx, fy) ≤ kd(gx, gy), 0 ≤ k < 1,

then f and g have a coincidence point, that is, there exists z ∈ A such that f(z) =
g(z).

The property of common fixed point for contractive type mappings necessarily
implies the commutativity conditions, a condition on the ranges of the mappings.
The theory of common fixed point is equally interesting as that of a mapping. In
1976, Jungck [1] initiated the study of existence of common fixed point under com-
mutativity of mappings and it was the direct generalization of Banach contraction
mapping principle for a pair of mappings. According to his theorem,

Theorem 1.2([1]). Let (X, d) be a complete metric space and let f and g be
commuting self-maps of X satisfying the conditions:

(i) fX ⊆ gX

(ii) d(fx, fy) ≤ kd(gx, gy), for all x, y ∈ X and some 0 ≤ k < 1.

If g is continuous, then f and g have a unique common fixed point.

Sessa [2] established a fixed point theorem for non-commuting pair of mappings
by introducing weakly commutativity. In 1986, Jungck [3] generalized the weak
commutativity by introducing the compatibility of mappings. Since then, many
studies of common fixed point of self-mappings, satisfying contractive type condi-
tions were initiated regarding the compatibility of mappings. In addition, many
generalized notions of compatible mappings were established and the results were
obtained for non-commuting mappings, see [4]-[12].

Now, we recall the relevant concepts to common fixed point theorems.

Definition 1.1([3]). Self-maps f and g of a metric space (X, d) are compatible
if limn d(fgxn, gfxn) = 0 whenever {xn} is a sequence in X such that limn fxn =
limn gxn = t for some t ∈ X.

Definition 1.2([7]). Two self-maps f, g of a non-empty set X are weakly compat-
ible if fgx = gfx whenever fx = gx, x ∈ X.

Definition 1.3([8]). Two self-maps f, g of a non-empty set X are occasionally
weakly compatible if there exists an element x ∈ X such that fx = gx implies
fgx = gfx.

Definition 1.4([9]). Two self-maps f and g of a metric space (X, d) are sub-
compatible if there exists a sequence {xn} in X such that limn fxn = limn gxn = t,
for some t ∈ X and limn d(fgxn, gfxn) = 0.

Definition 1.5([11]). Two self-maps f and g of a metric space (X, d) are condition-
ally compatible if whenever the set of sequences {yn} satisfying limn fyn = limn gyn
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is non-empty, there exists a sequence {xn} in X such that limn fxn = limn gxn = t,
for some t ∈ X and limn d(fgxn, gfxn) = 0.

Definition 1.6([13]). Two self-mappings A and S of a metric space (X, d) are
called reciprocally continuous if lim

n→∞
ASxn = At and lim

n→∞
SAxn = St whenever

{xn} is a sequence such that lim
n→∞

Sxn = t and lim
n→∞

Axn = t for some t in X.

Now, we give the definition of ε-compatible mappings.

Definition 1.7. Two self-maps f and g of a metric space (X, d) are said to be ε-
compatible if for every ε > 0, there exists an element x ∈ X such that d(fx, gx) < ε
implies d(fgx, gfx) < φ(ε), where φ : [0,∞)→ [0,∞) is continuous at 0.

Example 1.1. Let X = R be a metric space with the usual metric d(x, y) = |x−y|.
Define f, g : X → X by

fx =

{
x2, x 6= 0

1, x = 0.
gx =

{
2x, x 6= 0

2, x = 0.

For x 6= 0, |fx− gx| → 0 and |fgx− gfx| → 0 as x→ 0. That is, the pair f and g
is ε−compatible. For x = 2, fx = gx = 4, but |fgx − gfx| 6= 0. Hence the pair f
and g are not compatible and also not occasionally weakly compatible.

Remark 1.1. The concept of ε-compatible is independent of that of compatible.

Consider the two mappings f, g : R→ R such that fx = x+ 1 and gx = x+ 2.
The pair f and g are compatible but not ε-compatible.

Example 1.2. Consider the two self-mappings on R such that

fx =

{
1
x + 2x, if x 6= 0

1, if x = 0
and gx = 2x

Here, there is no sequence {xn} and t in R such that fxn, gxn converges to t.
But, |fx − gx| = 1

x → 0 as x → ∞. Then fgx = 1
2x + 4x and gfx = 2

x + 4x gives
|fgx−gfx| → 0 as x→∞. Hence, f and g are ε-compatible but not subcompatible.

Lemma 1.1. Let f be a self-map on a metric space (X, d). If f has a fixed point
in X, then, there exists a mapping g on X such that f and g are ε-compatible.

Proof. Let a be the fixed point of f . Define a map g on X such that g(x) = a, for
all x ∈ X. For any ε > 0, d(fa, ga) < ε implies d(fga, gfa) < ε. Thus, f, g are
ε-compatible. 2

Lemma 1.2. Let {xn} and {yn} be two sequences in a metric space (X, d) such
that d(xn, yn)→ 0 as n→∞. If {xn} is a Cauchy sequence , then {yn} so is.
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Proof. Since {xn} is Cauchy and limn d(xn, yn) = 0, then, we have that given ε
3 > 0,

there exists N ∈ N such that

d(xn, xm) <
ε

3
and d(xn, yn) <

ε

3
, ∀m,n ≥ N.

Now, for all m,n ≥ N,
d(yn, ym) ≤ d(yn, xn) + d(xn, xm) + d(xm, ym)

<
ε

3
+
ε

3
+
ε

3
= ε

i.e., d(yn, ym) < ε,

Thus, {yn} is Cauchy sequence. 2

In this paper, we prove some common fixed point theorems using ε-compatible
maps. Our first result is proved in the setting of compact metric space and it follows.

2. Main Results

Theorem 2.1. Let f and g be a ε-compatible maps of a compact metric space (X, d).
If f is continuous and satisfies the condition that d(gx, gy) < d(fx, fy), x 6= y, then
f and g have a unique common fixed point.

Proof. Since f and g are ε-compatible, for every n ∈ N, there exists an element xn
in X such that d(fxn, gxn) < 1

n ⇒ d(fgxn, gfxn) < φ( 1
n ). By the compactness of

X, {xn} has a subsequence, {xnk
} converges to an element in X, let it be p. Since

f is continuous, fxnk
→ fp as nk → ∞. Now, d(gxnk

, gp) < d(fxnk
, fp) implies

{gxnk
} converges to gp. Since d(fxn, gxn) → 0, we have that fp = gp = q. The

continuity of f implies that fgxnk
, f2xnk

→ fq as nk → ∞. But d(gfnk
, gq) <

d(f2xnk
, fq) implies that limnk→∞ gfxnk

= gq. By ε-compatiblity of f and g, we
have that fq = gq = q1. Next, we prove the unique point of coincidence of f and
g. Suppose that q and q1 are two distinct elements in X such that q = fp = gp
and q1 = fq = gq. Now, d(gp, gq) < d(fp, fq), i.e., d(q, q1) < d(q, q1) contradicts
to our assumption. Therefore, f and g have a unique point of coincidence. By the
unique point of coincidence , we have q = q1. Thus, fp = gp = fgp = gfp i.e.,
fq = gq = q. Hence, f and g have a unique common fixed point. 2

Theorem 2.2. Let f be a continuous self-mapping of a complete metric space
(X, d) and g : X → X be a mapping such that

(3.1) d(gx, gy) ≤ αd(fx, fy), α ∈ (0, 1)

for all x, y ∈ X. Then f and g are ε-compatible pair if, and only if f and g have a
unique common fixed point.

Proof. To prove the necessary part, we assume that f and g have a unique common
fixed point, p (say), in X.
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Given ε > 0, p ∈ X such that d(fp, gp) < ε ⇒ d(fgp, gfp) < ε. That is, f and
g are ε-compatible.

Now, we prove the sufficient part of our theorem. Assume that f and g are
ε-compatible. Since f and g are ε-compatible pair, for every n ∈ N, there exists an
element xn in X such that d(fxn, gxn) < 1

n2 ⇒ d(fgxn, gfxn) < φ( 1
n2 ). Now, for

x = xn and y = xn + 1, we have

(3.2) d(gxn, gxn+1) ≤ αd(fxn, fxn+1).

By the triangle inequality d(fxn, fxn+1) ≤ d(fxn, gxn) + d(gxn, gxn+1) +
d(gxn+1, fxn+1), (3.2) gives,

d(gxn, gxn+1) ≤ α(d(fxn, gxn) + d(gxn, gxn+1) + d(gxn+1, fxn+1))

< α
( 1

n2
+

1

(n+ 1)2

)
+ αd(gxn, gxn+1)

⇒ (1− α)d(gxn, gxn+1) < α
( 1

n2
+

1

(n+ 1)2

)
i.e., d(gxn, gxn+1) < (

α

(1− α)
)
( 1

n2
+

1

(n+ 1)2

)
.

For m ≤ n, we have

d(gxm, gxn) ≤ d(gxm, gxm+1) + d(gxm+1, gxm+2) + · · ·+ d(gxn−1, gxn)

≤ (
α

(1− α)
)
[ 1

m2
+

2

(m+ 1)2
+

2

(m+ 2)2
+ · · ·+ 2

(n− 1)2
+

1

n2

]
.

By Cauchy criteria for the convergence of a series, for every ε > 0, there exists
N , such that

d(gxn, gxm) < ε, ∀m,n ≥ N.

i.e., {gxn} is Cauchy sequence. By the completeness of X, there exists u in X such
that gxn → u as n → ∞. Since d(fxn, gxn) → 0, fxn converges to u. Since f is
continuous, f2xn, fgxn → fu. Now, (3.1) gives

d(gfxn, gu) ≤ αd(f2xn, fu).

As n → ∞, we have that gfxn → gu. Since d(fgxn, gfxn) → 0, we have
fu = gu. Now by the hypothesis,

d(gxn, gu) ≤ αd(fxn, fu).

Now we get that d(u, gu) ≤ αd(u, fu) = αd(u, gu) as n tends to ∞. Then
(1−α)d(u, gu) ≤ 0 ⇒ fu = gu = u. Thus, Clearly, by (3.1), f and g have a unique
common fixed point. 2
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Example 2.1. Let X = [4, 10] be a metric space with usual metric d(x, y) = |x−y|.
Define continuous functions f, g : X → X such that

f(x) =

{
1
10 (−10x+ 139), x ∈ [4, 7]
1
30 (31x− 10), x ∈ (7, 10]

g(x) =

{
1
50 (−3x+ 507), x ∈ [4, 7]
1
5 (2x+ 30), x ∈ (7, 10].

At x = 4, the pair {f, g} is not compatible, for f(4) = g(4) but (fg)(4) 6= (gf)(4).
Further, the pair {f, g} is ε-compatible and also satisfies the sufficient requirements
of Theorem 2.1 with α = 12

31 . Thus f and g have a unique fixed point, i.e., f(10) =
g(10) = 10.

Corollary 2.1. Let f and g be reciprocal continuous mappings of a complete metric
space (X, d) such that

d(gx, gy) ≤ αd(fx, fy), α ∈ (0, 1),

for all x, y ∈ X. If f and g are ε-compatible pair, then, f and g have a unique
common fixed point.

Proof. By the reciprocal continuity of f, g and ε-compatibility, it gives straight away
that fu = gu. The remaining part of the proof follow Theorem 2.2. 2

Let R+ be set of all non-negative real numbers. Consider a function ψ : R+ →
R+ which is non-decreasing and ψ(t) < t for t > 0.

Theorem 2.3. Let f , g be ε-compatible mappings on a complete metric space (X, d)
satisfying

(3.3) d(gx, gy) ≤ ψ(m(x, y)), ∀x, y ∈ X

where m(x, y) = max{d(fx, gx), d(fy, gy)}. If f is continuous on X, then there
exists u in X such that fu = gu = u and such a point is unique.

Proof. The ε-compatibility of f and g implies that there exists a sequence {xn} ∈ X
such that

d(fxn, gxn) <
1

n2
and d(fgxn, gfxn) < φ(

1

n2
).

The inequality (3.3) gives,

d(gxn, gxn+1) ≤ ψ(m(xn, xn+1)),

m(xn, xn+1) = max{d(fxn, gxn), d(fxn+1, gxn+1)}.

Since ψ is non-decreasing, we have ψ(m(xn, xn+1)) ≤ ψ( 1
n2 ), then

d(gxn, gxn+1) ≤ ψ(d(m(xn, xn+1))) ≤ ψ(
1

n2
) <

1

n2
.

For m ≤ n, we have

d(gxm, gxn) ≤ d(gxm, gxm+1) + d(gxm+1, gxm+2) + · · ·+ d(gxn−1, gxn)

<
1

m2
+

1

(m+ 1)2
+ · · ·+ 1

n2
.
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By Cauchy criteria for the series
∑

1
n2 and sn =

∑n
1

1
k2 , for every ε > 0, there

exists N such that |sn − sn+p| < ε, for all n ≥ N and p ∈ N. Therefore, {gxn} is
Cauchy sequence and by Lemma 1.2, {fxn} is also Cauchy sequence. Since X is
complete, there exists an element u ∈ X such that fxn, gxn converges to u. The
continuity of f and ε-compatibility of f and g implies fgxn, gfxn converges to fu.
Suppose that fu 6= gu. By our hypothesis, we have

d(gfxn, gu) ≤ ψ(m(fxn, u)),

m(fxn, u) = max{d(ffxn, gfxn), d(fu, gu)}.

As n → ∞, we have d(fu, gu) ≤ ψ(d(fu, gu)) < d(fu, gu) which contradicts.
Then, u is the coincidence point of f and g, i.e., fu = gu. Now, we shall show that
fu = gu = u. Our hypothesis gives,

d(gxn, gu) ≤ ψ(m(xn, u))

= ψ(max{d(fxn, gxn), d(fu, gu)}).

Letting n → ∞, we have d(u, gu) ≤ ψ(0) = 0. Thus u is the fixed point of f
and g. If there exists v ∈ X such that fv = gv = v, then

d(gu, gv) ≤ ψ(m(u, v))

= ψ(max{d(fu, gu), d(fv, gv)}) = 0.

i.e., u = v. Hence, f and g have a unique common fixed point. 2

Corollary 2.2. Let f and g be ε-compatible mappings on a complete metric space
(X, d) satisfying the condition, for all x, y ∈ X,

d(gx, gy) ≤ αmax{d(fx, gx), d(fy, gy)}, α ∈ (0, 1).

If f is continuous on X, then f and g have a unique common fixed point.

Proof. Consider the function ψ(t) = αt in Theorem 2.3 and prove Corollary 2.2. 2

Theorem 2.4. Let (X, d) be a complete metric space and f, g be ε-compatible
mappings on X. If the maps f and g satisfy

(3.4) d(gx, gy) ≤ ad(fx, fy) + bd(fx, gx) + cd(fy, gy), ∀x, y ∈ X

where a, b and c are in R+ such that a, c ∈ [0, 1).

Proof. The ε-compatibility of f and g ensures the existence of a sequence {xn} in
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X such that d(fxn, gxn) < 1
n2 implies d(fgxn, gfxn) < φ( 1

n2 ). Now, (3.4) gives,

d(gxn, gxn+1) ≤ ad(fxn, fxn+1) + bd(fxn, gxn) + cd(fxn+1, gxn+1)

≤ a[d(fxn, gxn) + d(gxn, gxn+1) + d(gxn+1, fxn+1)]

+bd(fxn, gxn) + cd(fxn+1, gxn+1),

(1− a)d(gxn, gxn+1) ≤ (a+ b)d(fxn, gxn) + (a+ c)d(fxn+1, gxn+1),

d(gxn, gxn+1) ≤
(a+ b

1− a

)
d(fxn, gxn) +

(a+ c

1− a

)
d(fxn+1, gxn+1)

<
(a+ b

1− a

) 1

n2
+
(a+ c

1− a

) 1

(n+ 1)2
,

i.e., d(gxn, gxn+1) <
(2a+ b+ c

1− a

) 1

n2
.

For m ≤ n, we have

d(gxm, gxn) ≤
n−1∑
m

d(gxi, gxi+1)

<
(2a+ b+ c

1− a

) n−1∑
m

1

k2
.

Since the sequence sn =
∑n

1
1
k2 is Cauchy, {gxn} is also Cauchy. Then, by

Lemma 1.2, {fxn} is Cauchy sequence. Now, by hypothesis of X, there exists
u ∈ X such that lim fxn = lim gxn = u. The continuity of f gives that lim fgxn =
lim f2xn = fu and d(fgxn, gfxn) → 0 implies {gfxn} converges to fu. Suppose
that fu 6= gu, by (3.4), we have

d(gfxn, gu) ≤ ad(ffxn, fu) + bd(ffxn, gfxn) + cd(fu, gu)

Asn→∞, d(fu, gu) ≤ cd(fu, gu)

i.e., d(fu, gu) < d(fu, gu)

contradicts. Then, we have shown that fu = gu. Our hypothesis gives,

d(gxn, gu) ≤ ad(fxn, fu) + bd(fxn, gxn) + cd(fu, gu)

Asn→∞, d(u, gu) ≤ ad(u, fu)

(1− a)d(u, gu) ≤ 0

gives gu = u. Thus, we have shown that fu = gu = u. If v is the fixed point of f
and g, we have, by hypothesis,

d(gu, gv) ≤ ad(fu, fv) + bd(fu, gu) + cd(fv, gv)

d(u, v) ≤ ad(u, v)

(1− a)d(u, v) ≤ 0
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implies u = v. Hence, f and g have a unique common fixed point. 2

Corollary 2.3. Let f and g be ε-compatible mappings on a complete metric space
(X, d) satisfying the condition, for all x, y ∈ X,

d(gx, gy) ≤ α[d(fx, gx) + d(fy, gy)], α ∈ (0, 1).

If f is continuous on X, then f and g have a unique common fixed point.

Proof. With a = 0 in Theorem 2.4, we can prove the Corollary easily. 2

Theorem 2.5. Let f and g be ε-compatible mappings on a complete metric space
(X, d) satisfying the condition, for all x, y ∈ X,

(3.5) d(gx, gy) ≤ αm(x, y)

where, m(x, y) = max{d(fx, fy), d(fx, gx), d(fx, gy), d(fy, gx), d(fy, gy)} and α ∈
(0, 1). If f is continuous on X, then f and g have a unique common fixed point.

Proof. The ε-compatibility of f and g implies that there exists a sequence {xn} in
X such that for given 1

n2 > 0, d(fxn, gxn) < 1
n2 implies d(fgxn, gfxn) < φ( 1

n2 ).
Then, (3.5) gives,

d(gxn, gxn+1) ≤αmax{d(fxn, fxn+1), d(fxn, gxn), d(fxn, gxn+1),

d(fxn+1, gxn), d(fxn+1, gxn+1)}(3.6)

Now, we examine the possibilities to be occurred, by cases.

(i) m(xn, xn+1) = d(fxn, fxn+1), by (3.5), we have

d(gxn, gxn+1) ≤ α[d(fxn, gxn) + d(gxn, gxn+1) + d(gxn+1, fxn+1)]

(1− α)d(gxn, gxn+1) < α
[ 1

n2
+

1

(n+ 1)2

]
d(gxn, gxn+1) <

α

1− α

[ 1

n2
+

1

(n+ 1)2

]
(ii) m(xn, xn+1) = d(fxn, gxn)

i.e., d(gxn, gxn+1) < α[ 1
n2 ]

(iii) m(xn, xn+1) = d(fxn, gxn+1)

d(gxn, gxn+1) ≤ α[d(fxn, gxn) + d(gxn, gxn+1)]

d(gxn, gxn+1) <
α

1− α

[ 1

n2

]
(iv) m(xn, xn+1) = d(fxn+1, gxn)

d(gxn, gxn+1) ≤ α[d(fxn+1, gxn+1) + d(gxn+1, gxn)]

d(gxn, gxn+1) <
α

1− α

[ 1

(n+ 1)2

]
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(v) m(xn, xn+1) = d(fxn+1, gxn+1)

i.e.,d(gxn, gxn+1) < α
1−α

[
1

(n+1)2

]
From all the possibilities, it can be concluded that for n ∈ N , d(gxn, gxn+1) <

k
[

1
n2 + 1

(n+1)2

]
, where δ = max{α, α

1−α}. For m ≤ n, we have

d(gxm, gxn) ≤
n−1∑
m

d(gxi, gxi+1)

< δ

n−1∑
m

2

k2
.

Since the sequence sn =
∑n

1
1
k2 is Cauchy, {gxn} is Cauchy and {fxn} is also

Cauchy. On account of complete metric space (X, d), there exists z ∈ X such that
fxn, gxn → z as n → ∞. Continuity of f and the ε-compatibility of mappings
together implies that fgxn, gfxn converges to fz. Now by hypothesis,

d(gfxn, gz) ≤ αm(fxn, xn)

m(fxn, xn) = max{d(ffxn, fz), d(ffxn, gfxn), d(ffxn, gz),

d(fz, gfxn), d(fz, gz)},
lim
n→∞

m(fxn, xn) = d(fz, gz),

Then, we have

i.e., d(fz, gz) = lim
n
d(gfxn, gz) ≤ αd(fz, gz)

(1− α)d(fz, gz) ≤ 0

Since α < 1, we have fz = gz. Then,

d(gxn, gz) ≤ αm(xn, z)

m(xn, z) = max{d(fxn, fz), d(fxn, gxn), d(fxn, gz),

d(fz, gxn), d(fz, gz)}
lim
n→∞

m(xn, z) = d(z, gz)

i.e., (1− α)d(z, gz) ≤ d(z, gz)

gives z = gz. Thus, z is the common fixed point of f and g. Explicitly, the inequality
(3.5) implies the uniqueness of coincidence point and hence, f and g have a unique
common fixed point. 2

Remark 2.1. In the above theorems, we can obtain the same conclusion with re-
ciprocal continuity of f and g and ε-compatibility keeping the contractive condition.
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