• Title/Summary/Keyword: metric space

Search Result 733, Processing Time 0.028 seconds

A Finsler space with a special metric function

  • Park, Hong-Suh;Lee, Il-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.415-421
    • /
    • 1996
  • In this paper, we shall find the conditions that the Finsler space with a special $(\alpha,\beta)$-metric be a Riemannian space and a Berwald space.

  • PDF

THE REICH TYPE CONTRACTION IN A WEIGHTED bν(α)-METRIC SPACE

  • Pravin Singh;Shivani Singh;Virath Singh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.1087-1095
    • /
    • 2023
  • In this paper, the concept of a weighted bν(α)-metric space is introduced as a generalization of the bν(s)-metric space and ν-metric space. We prove some fixed point results of the Reich-type contraction in the weighted bν(α)-metric space. Furthermore, we generalize Reich's theorem by extending the result to a weighted bν(α)-metric space.

Some Properties on Intuitionistic Fuzzy Metric Space

  • Park, Jong-Seo;Kwun, Young-Chel;Park, Jin-Han
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.152-156
    • /
    • 2010
  • We define some terminologies on intuitionistic fuzzy metric space and prove that the topology generated by any intuitionistic fuzzy metric space is metrizable. Also, we show that if the intuitionistic fuzzy metric space is complete, then the generated topology is completely metrizable, a Baire space, and that an intuitionistic fuzzy metric space is precompact if and only if every sequence has a Cauchy subsequence.

SOME COMMON FIXED POINT THEOREMS WITH CONVERSE COMMUTING MAPPINGS IN BICOMPLEX-VALUED PROBABILISTIC METRIC SPACE

  • Sarmila Bhattacharyya;Tanmay Biswas;Chinmay Biswas
    • The Pure and Applied Mathematics
    • /
    • v.31 no.3
    • /
    • pp.299-310
    • /
    • 2024
  • The probabilistic metric space as one of the important generalizations of metric space, was introduced by Menger [16] in 1942. Later, Choi et al. [6] initiated the notion of bicomplex-valued metric spaces (bi-CVMS). Recently, Bhattacharyya et al. [3] linked the concept of bicomplex-valued metric spaces and menger spaces, and initiated menger space with bicomplex-valued metric. Here, in this paper, we have taken probabilistic metric space with bicomplex-valued metric, i.e., bicomplexvalued probabilistic metric space and proved some common fixed point theorems using converse commuting mappings in this space.

DOUGLAS SPACES OF THE SECOND KIND OF FINSLER SPACE WITH A MATSUMOTO METRIC

  • Lee, Il-Yong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.209-221
    • /
    • 2008
  • In the present paper, first we define a Douglas space of the second kind of a Finsler space with an (${\alpha},{\beta}$)-metric. Next we find the conditions that the Finsler space with an (${\alpha},{\beta}$)-metric be a Douglas space of the second kind and the Finsler space with a Matsumoto metric be a Douglas space of the second kind.

  • PDF

THE COMPLETENESS OF CONVERGENT SEQUENCES SPACE OF FUZZY NUMBERS

  • Choi, Hee Chan
    • Korean Journal of Mathematics
    • /
    • v.4 no.2
    • /
    • pp.117-124
    • /
    • 1996
  • In this paper we define a new fuzzy metric $\tilde{\theta}$ of fuzzy number sequences, and prove that the space of convergent sequences of fuzzy numbers is a fuzzy complete metric space in the fuzzy metric $\tilde{\theta}$.

  • PDF

COMMON FIXED POINT IN FUZZY METRIC SPACES

  • SHARMA SUSHIL;TIWARI JAYESH K.
    • The Pure and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.17-31
    • /
    • 2005
  • In this paper we prove common fixed point theorems for three mappings under the condition of weak compatible mappings, without taking any function continuous in fuzzy metric space and then extend this result to fuzzy 2-metric space and fuzzy 3-metric space.

  • PDF

WEAKLY BERWALD SPACE WITH A SPECIAL (α, β)-METRIC

  • PRADEEP KUMAR;AJAYKUMAR AR
    • Honam Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.491-502
    • /
    • 2023
  • As a generalization of Berwald spaces, we have the ideas of Douglas spaces and Landsberg spaces. S. Bacso defined a weakly-Berwald space as another generalization of Berwald spaces. In 1972, Matsumoto proposed the (α, β) metric, which is a Finsler metric derived from a Riemannian metric α and a differential 1-form β. In this paper, we investigated an important class of (α, β)-metrics of the form $F={\mu}_1\alpha+{\mu}_2\beta+{\mu}_3\frac{\beta^2}{\alpha}$, which is recognized as a special form of the first approximate Matsumoto metric on an n-dimensional manifold, and we obtain the criteria for such metrics to be weakly-Berwald metrics. A Finsler space with a special (α, β)-metric is a weakly Berwald space if and only if Bmm is a 1-form. We have shown that under certain geometric and algebraic circumstances, it transforms into a weakly Berwald space.

DOUBLE CONTROLLED CONE METRIC SPACES AND THE RELATED FIXED POINT THEOREMS

  • Tayebeh Lal Shateri
    • The Pure and Applied Mathematics
    • /
    • v.30 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • In this paper, we introduce double controlled cone metric spaces via two control functions. An example of a double controlled cone metric space by two incomparable functions, which is not a controlled metric space, is given. We also provide some fixed point results involving Banach type and Kannan type contractions in the setting of double controlled cone metric spaces.

FIXED POINT THEOREMS IN b-METRIC AND EXTENDED b-METRIC SPACES

  • P. Swapna;T. Phaneendra;M. N. Rajashekhar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.877-886
    • /
    • 2023
  • The first result of this paper is to give a revised proof of Sanatammappa et al.'s recent result in a b-metric space, under appropriate choice of constants without using the continuity of the b-metric. The second is to prove a fixed point theorem under a contraction type condition in an extended b-metric space.