Kangweon-Kyungki Math. Jour. 4 (1996), No. 2, pp. 117-124

THE COMPLETENESS OF CONVERGENT SEQUENCES SPACE OF FUZZY NUMBERS

HEE CHAN CHOI

ABSTRACT. In this paper we define a new fuzzy metric $\tilde{\theta}$ of fuzzy number sequences, and prove that the space of convergent sequences of fuzzy numbers is a fuzzy complete metric space in the fuzzy metric $\tilde{\theta}$.

1. Introduction

D. Dubois and H. Prade introduced the notions of fuzzy numbers and defined its basic operations [2]. R. Goetschel, A. Kaufmann, M. Gupta and G. Zhang [3-7] have done much work about fuzzy numbers.

Let \mathbb{R} be the set of all real numbers and $F^*(\mathbb{R})$ all fuzzy subsets defined on \mathbb{R} . G. Zhang [5-7] defined the fuzzy number $\tilde{a} \in F^*(\mathbb{R})$ as follows :

- (1) \tilde{a} is normal, i.e., there exists $x \in \mathbb{R}$ such that $\tilde{a}(x) = 1$,
- (2) for every $\lambda \in (0, 1]$, $a_{\lambda} = \{x \mid \tilde{a}(x) \geq \lambda\}$ is a closed interval, denoted by $[a_{\lambda}^{-}, a_{\lambda}^{+}]$.

Now, let us denote the set of all fuzzy numbers defined by G. Zhang as $F(\mathbb{R})$. In this paper, we will use Zhang's fuzzy distance $\tilde{\rho}$ of fuzzy numbers [5-7] as follows :

$$\tilde{\rho}(\tilde{a}, \tilde{b}) = \bigcup_{\lambda \in [0,1]} \lambda \left[|a_1^- - b_1^-|, \sup_{\lambda \le \eta \le 1} |a_\eta^- - b_\eta^-| \lor |a_\eta^+ - b_\eta^+| \right]$$

for any $\tilde{a}, \tilde{b} \in F(\mathbb{R})$, where \vee means max.

The purpose of this paper is to prove that the space of convergent sequences of fuzzy numbers is a fuzzy complete metric space in some fuzzy metric $\tilde{\theta}$.

Received June 18, 1996.

¹⁹⁹¹ Mathematics Subject Classification: 40A05.

Key words and phrases: fuzzy metric(distance), fuzzy complete metric space.

In section 2, we quote basic definitions and theorems from [1,5,6] which will be needed in the proof of main theorem.

In section 3, we prove main theorem: The space of convergent sequences of fuzzy numbers is a fuzzy complete metric space in a fuzzy metric $\tilde{\theta}$ defined by

$$\tilde{\theta}(A_i, A_j) = \bigcup_{\lambda \in [0,1]} \lambda \left[\sup_n |(a_{in})_1^- - (a_{jn})_1^-|, \\ \sup_n \sup_{\lambda \le \eta \le 1} |(a_{in})_\eta^- - (a_{jn})_\eta^-| \lor |(a_{in})_\eta^+ - (a_{jn})_\eta^+| \right]$$

where $A_i = \{\tilde{a}_{in}\}$ and $A_j = \{\tilde{a}_{jn}\}$ are convergent sequences of fuzzy numbers with respect to the fuzzy metric $\tilde{\rho}$.

2. Definitions and preliminaries

In this section, we quote basic definitions [1,5,6,7] and theorems, proved in [6,7], which will be needed in the proof of main theorem.

Let $F^*(\mathbb{R})$ be the set of all fuzzy subsets defined on \mathbb{R} .

DEFINITION 2.1. Let $\tilde{a} \in F^*(\mathbb{R})$. \tilde{a} is called a fuzzy number if \tilde{a} has the following properties:

- (1) \tilde{a} is normal, i.e., there exists $x \in \mathbb{R}$ such that $\tilde{a}(x) = 1$.
- (2) For every $\lambda \in (0,1], a_{\lambda} = \{x | \tilde{a}(x) \ge \lambda\}$ is a closed interval, denoted by $[a_{\lambda}^{-}, a_{\lambda}^{+}]$.

Let $F(\mathbb{R})$ be the set of all fuzzy numbers on the real line \mathbb{R} . By the decomposition theorem of fuzzy sets

$$\tilde{a} = \bigcup_{\lambda \in [0,1]} \lambda \left[a_{\lambda}^{-}, a_{\lambda}^{+} \right]$$

for every $\tilde{a} \in F(\mathbb{R})$. If we define $\tilde{a}(x)$ by

$$\tilde{a}(x) = \begin{cases} 1 & \text{for } x = k \\ 0 & \text{for } x \neq k \ (k \in \mathbb{R}), \end{cases}$$

then $k \in F(\mathbb{R})$ and $k = \bigcup_{\lambda \in [0,1]} \lambda[k,k]$.

118

DEFINITION 2.2. Let $\tilde{a}, \tilde{b}, \tilde{c} \in F(\mathbb{R})$. We define as follows:

(1) $\tilde{c} = \tilde{a} + \tilde{b}$ if $c_{\lambda}^{-} = a_{\lambda}^{-} + b_{\lambda}^{-}$ and $c_{\lambda}^{+} = a_{\lambda}^{+} + b_{\lambda}^{+}$ for every $\lambda \in (0, 1]$. (2) $\tilde{c} = \tilde{a} - \tilde{b}$ if $c_{\lambda}^{-} = a_{\lambda}^{-} - b_{\lambda}^{+}$ and $c_{\lambda}^{+} = a_{\lambda}^{+} - b_{\lambda}^{-}$ for every $\lambda \in (0, 1]$. (3) For every $k \in \mathbb{R}$ and $\tilde{a} \in F(\mathbb{R})$,

$$\begin{split} k\tilde{a} &= \bigcup_{\lambda \in [0,1]} \lambda \big[ka_{\lambda}^{-}, ka_{\lambda}^{+} \big] & \text{if } k \geqslant 0, \\ &= \bigcup_{\lambda \in [0,1]} \lambda \big[ka_{\lambda}^{+}, ka_{\lambda}^{-} \big] & \text{if } k < 0. \end{split}$$

- (4) $\tilde{a} \leq \tilde{b}$ if $a_{\lambda}^{-} \leq b_{\lambda}^{-}$ and $a_{\lambda}^{+} \leq b_{\lambda}^{+}$ for every $\lambda \in (0, 1]$. (5) $\tilde{a} < \tilde{b}$ if $\tilde{a} \leq \tilde{b}$ and there exists $\lambda \in (0, 1]$ such that $a_{\lambda}^{-} < b_{\lambda}^{-}$ or $a_{\lambda}^+ < b_{\lambda}^+.$
- (6) $\tilde{a} = \tilde{b}$ if $\tilde{a} \leq \tilde{b}$ and $\tilde{b} \leq \tilde{a}$.

DEFINITION 2.3. Let $A \subset F(\mathbb{R})$.

- (1) If there exists $\tilde{M} \in F(\mathbb{R})$ such that $\tilde{a} \leq \tilde{M}$ for every $\tilde{a} \in A$, then A is said to have an upper bound \tilde{M} .
- (2) If there exists $\tilde{m} \in F(\mathbb{R})$ such that $\tilde{m} \leq \tilde{a}$ for every $\tilde{a} \in A$, then A is said to have a lower bound \tilde{m} .
- (3) A is said to be bounded if A has both upper and lower bounds.
- (4) A sequence $\{\tilde{a}_n\} \subset F(\mathbb{R})$ is said to be bounded if the set $\{\tilde{a}_n | n \in \mathbb{N}\}\$ is bounded.

DEFINITION 2.4. A fuzzy distance $\tilde{\rho}$ of two fuzzy numbers $\tilde{a}, \tilde{b} \in$ $F(\mathbb{R})$ is a function $\tilde{\rho}$: $F(\mathbb{R}) \times F(\mathbb{R}) \longrightarrow F(\mathbb{R})$ with the properties :

- (1) $\tilde{\rho}(\tilde{a}, \tilde{b}) \ge 0$, $\tilde{\rho}(\tilde{a}, \tilde{b}) = 0$ iff $\tilde{a} = \tilde{b}$.
- (2) $\tilde{\rho}(\tilde{a}, \tilde{b}) = \tilde{\rho}(\tilde{b}, \tilde{a}).$
- (3) Whenever $\tilde{c} \in F(\mathbb{R})$, we have $\tilde{\rho}(\tilde{a}, \tilde{b}) \leq \tilde{\rho}(\tilde{a}, \tilde{c}) + \tilde{\rho}(\tilde{c}, \tilde{b})$.

If $\tilde{\rho}$ is a fuzzy distance of fuzzy numbers, we call $(F(\mathbb{R}), \tilde{\rho})$ a fuzzy metric space. We define

$$\tilde{\rho}(\tilde{a}, \tilde{b}) = \bigcup_{\lambda \in [0,1]} \lambda \left[|a_1^- - b_1^-|, \sup_{\lambda \le \eta \le 1} |a_\eta^- - b_\eta^-| \lor |a_\eta^+ - b_\eta^+| \right] \quad (*)$$

for any $\tilde{a}, \tilde{b} \in F(\mathbb{R})$, where \vee means max.

THEOREM 2.1. [5,6,7] $\tilde{\rho}$ defined by the above equality (*) is a fuzzy distance of fuzzy numbers, that is, $(F(\mathbb{R}), \tilde{\rho})$ is a fuzzy metric space.

DEFINITION 2.5. Let $\{\tilde{a}_n\} \subset F(\mathbb{R}), \ \tilde{a} \in F(\mathbb{R})$. Then the sequence $\{\tilde{a}_n\}$ is said to converge to \tilde{a} in fuzzy distance $\tilde{\rho}$, denoted by

$$(\tilde{\rho})\lim_{n\to\infty}\tilde{a}_n=\tilde{a}$$

if for any given $\varepsilon > 0$ there exists an integer N > 0 such that $\tilde{\rho}(\tilde{a}_n, \tilde{a}) < \varepsilon$ for $n \ge N$.

A sequence $\{\tilde{a}_n\}$ in $F(\mathbb{R})$ is said to be a Cauchy sequence if for every $\varepsilon > 0$ there exists an integer N > 0 such that $\tilde{\rho}(\tilde{a}_n, \tilde{a}_m) < \varepsilon$ for n, m > N. A fuzzy metric space $(F(\mathbb{R}), \tilde{\rho})$ is called the fuzzy complete metric space if every Cauchy sequence in $F(\mathbb{R})$ converges.

THEOREM 2.2. [1,7] The sequence $\{\tilde{a}_n\}$ in $F(\mathbb{R})$ is convergent in the metric $\tilde{\rho}$ if and only if $\{\tilde{a}_n\}$ is a Cauchy sequence.

THEOREM 2.3. [7] The fuzzy metric space $(F(\mathbb{R}), \tilde{\rho})$ is complete.

3. Main theorem

In this section, we prove that the space of convergent sequences in $F(\mathbb{R})$ is a fuzzy complete metric space with some fuzzy metric $\tilde{\theta}$.

Let \mathcal{C} denote the set of all convergent sequences of fuzzy numbers.

MAIN THEOREM. $(\mathcal{C}, \tilde{\theta})$ is a fuzzy complete metric space with the fuzzy metric $\tilde{\theta}$ defined by

$$\tilde{\theta}(A_i, A_j) = \bigcup_{\lambda \in [0,1]} \lambda \left[\sup_n |(a_{in})_1^- - (a_{jn})_1^-|, \\ \sup_n \sup_{\lambda \le \eta \le 1} |(a_{in})_\eta^- - (a_{jn})_\eta^-| \lor |(a_{in})_\eta^+ - (a_{jn})_\eta^+| \right]$$

where $A_i = \{\tilde{a}_{in}\}$ and $A_j = \{\tilde{a}_{jn}\}$ are convergent sequences of fuzzy numbers with respect to the fuzzy metric $\tilde{\rho}$.

120

Proof. First we shall check that $\tilde{\theta}$ is a metric in C. It is easy to see that $(i)\tilde{\theta}(A_i, A_j) \ge 0$, $\tilde{\theta}(A_i, A_j) = 0$ iff $A_i = A_j$, $(ii)\tilde{\theta}(A_i, A_j) = \tilde{\theta}(A_j, A_i)$. Since $\tilde{\rho}$ is a fuzzy metric in $F(\mathbb{R})$, the following triangle inequality holds :

$$\tilde{\rho}(\tilde{a}_{in}, \tilde{a}_{jn}) \leqslant \tilde{\rho}(\tilde{a}_{in}, \tilde{a}_{kn}) + \tilde{\rho}(\tilde{a}_{kn}, \tilde{a}_{jn})$$

where $A_i = \{\tilde{a}_{in}\}, A_j = \{\tilde{a}_{jn}\}$ and $A_k = \{\tilde{a}_{kn}\}$ are convergent sequences with respect to $\tilde{\rho}$ in $F(\mathbb{R})$. Thus, we have

$$\begin{aligned} |(a_{in})_{1}^{-} - (a_{jn})_{1}^{-}| &\leq |(a_{in})_{1}^{-} - (a_{kn})_{1}^{-}| + |(a_{kn})_{1}^{-} - (a_{jn})_{1}^{-}|, \\ \sup_{\lambda \leq \eta \leq 1} |(a_{in})_{\eta}^{-} - (a_{jn})_{\eta}^{-}| &\vee |(a_{in})_{\eta}^{+} - (a_{jn})_{\eta}^{+}| \\ &\leq \sup_{\lambda \leq \eta \leq 1} |(a_{in})_{\eta}^{-} - (a_{kn})_{\eta}^{-}| &\vee |(a_{in})_{\eta}^{+} - (a_{kn})_{\eta}^{+}| \\ &+ \sup_{\lambda \leq \eta \leq 1} |(a_{kn})_{\eta}^{-} - (a_{jn})_{\eta}^{-}| &\vee |(a_{kn})_{\eta}^{+} - (a_{jn})_{\eta}^{+}|. \end{aligned}$$

Therefore, we have

$$\begin{split} \sup_{n} |(a_{in})_{1}^{-} - (a_{jn})_{1}^{-}| \\ &\leqslant \sup_{n} |(a_{in})_{1}^{-} - (a_{kn})_{1}^{-}| + \sup_{n} |(a_{kn})_{1}^{-} - (a_{jn})_{1}^{-}|, \\ &\sup_{n} \sup_{\lambda \leq \eta \leq 1} |(a_{in})_{\eta}^{-} - (a_{jn})_{\eta}^{-}| \lor |(a_{in})_{\eta}^{+} - (a_{jn})_{\eta}^{+}| \\ &\leqslant \sup_{n} \sup_{\lambda \leq \eta \leq 1} |(a_{in})_{\eta}^{-} - (a_{kn})_{\eta}^{-}| \lor |(a_{in})_{\eta}^{+} - (a_{kn})_{\eta}^{+}| \\ &+ \sup_{n} \sup_{\lambda \leq \eta \leq 1} |(a_{kn})_{\eta}^{-} - (a_{jn})_{\eta}^{-}| \lor |(a_{kn})_{\eta}^{+} - (a_{jn})_{\eta}^{+}|. \end{split}$$

Hence, (iii) the triangle inequality $\tilde{\theta}(A_i, A_j) \leq \tilde{\theta}(A_i, A_k) + \tilde{\theta}(A_k, A_j)$ follows. Consequently, by (i), (ii) and (iii), $\tilde{\theta}$ is a fuzzy metric in C.

To show that \mathcal{C} is complete in the fuzzy metric $\tilde{\theta}$, let $\{A_i\}_{i=1}^{\infty}$ (where $A_i = \{\tilde{a}_{in}\}_{n=1}^{\infty}$) be a Cauchy sequence in \mathcal{C} . Then, for any $\varepsilon > 0$ there exists an integer N_n such that

$$\begin{split} \hat{\rho}(\hat{a}_{in}, \hat{a}_{jn}) \\ \leqslant \bigcup_{\lambda \in [0,1]} \lambda \Big[\sup_{n} |(a_{in})_{1}^{-} - (a_{jn})_{1}^{-} |, \sup_{n} \sup_{\lambda \leq \eta \leq 1} |(a_{in})_{\eta}^{-} - (a_{jn})_{\eta}^{-} | \\ & \vee |(a_{in})_{\eta}^{+} - (a_{jn})_{\eta}^{+} | \Big] \\ = \tilde{\theta}(A_{i}, A_{j}) < \frac{\varepsilon}{5} \end{split}$$
(1)

for $i, j > N_n$. Thus, $\{\tilde{a}_{in}\}_{i=1}^{\infty}$ is a Cauchy sequence in $F(\mathbb{R})$ for each fixed n. Since $(F(\mathbb{R}), \tilde{\rho})$ is complete from Theorem 2.3, by Theorem 2.2 $(\tilde{\rho}) \lim_{i \to \infty} \tilde{a}_{in} = \tilde{a}_n$ (say) for each n. Hence, we have

$$\lim_{i \to \infty} \tilde{\rho}(\tilde{a}_{in}, \tilde{a}_n) = 0 \quad \text{for each } n$$

$$\iff \lim_{i \to \infty} \bigcup_{\lambda \in [0,1]} \lambda \left[|(a_{in})_1^- - (a_n)_1^-|, \sup_{\lambda \le \eta \le 1} |(a_{in})_\eta^- - (a_n)_\eta^-| \lor |(a_{in})_\eta^+ - (a_n)_\eta^+| \right] = 0 \quad \text{for each } n$$

$$\iff \lim_{i \to \infty} \bigcup_{\lambda \in [0,1]} \lambda \left[\sup_n |(a_{in})_1^- - (a_n)_1^-|, \sup_n \sup_{\lambda \le \eta \le 1} |(a_{in})_\eta^- - (a_n)_\eta^-| \lor |(a_{in})_\eta^+ - (a_n)_\eta^+| \right] = 0$$

$$\iff \lim_{i \to \infty} \tilde{\theta}(A_i, \{\tilde{a}_n\}) = 0$$

$$\iff (\tilde{\theta}) \lim_{i \to \infty} A_i = \{\tilde{a}_n\}_{n=1}^{\infty}.$$

So, the sequence $\{A_i\}_{i=1}^{\infty}$ converges to $\{\tilde{a}_n\}_{n=1}^{\infty}$, i.e., $(\tilde{\theta}) \lim_{i \to \infty} A_i = \{\tilde{a}_n\}_{n=1}^{\infty}$ (This notation means that the sequence $\{A_i\}_{i=1}^{\infty}$ converges to the sequence $\{\tilde{a}_n\}_{n=1}^{\infty}$ in the fuzzy metric $\tilde{\theta}$).

We shall now show that $\{\tilde{a}_n\}_{n=1}^{\infty} \in \mathcal{C}$. In (1), taking the limit as $j \to \infty$, we have $\tilde{\rho}(\tilde{a}_{in}, \tilde{a}_n) < \frac{\varepsilon}{5}$. Since A_i is convergent for each i, A_i is a Cauchy sequence. Thus, for given $\varepsilon > 0$ there exists an integer $N_i > 0$ such that $\tilde{\rho}(\tilde{a}_{in}, \tilde{a}_{ik}) < \frac{\varepsilon}{5}$ for $n, k > N_i$, for fixed i. Similarly, for given $\varepsilon > 0$ there exists $N_j > 0$ such that $\tilde{\rho}(\tilde{a}_{jn}, \tilde{a}_{jk}) < \frac{\varepsilon}{5}$ for $n, k > N_i$, for fixed i. Similarly, for given $\varepsilon > 0$ there exists $N_j > 0$ such that $\tilde{\rho}(\tilde{a}_{jn}, \tilde{a}_{jk}) < \frac{\varepsilon}{5}$ for $n, k > N_j$, for fixed j. Let we put $N = max\{N_n, N_i, N_j\}$. Then for given $\varepsilon > 0$ there exist $\tilde{a}_{ik}, \tilde{a}_{jk} \in F(\mathbb{R})$ in connection with (1) such that

$$\tilde{\rho}(\tilde{a}_{in}, \tilde{a}_{ik}) < \frac{\varepsilon}{5}, \quad \tilde{\rho}(\tilde{a}_{jn}, \tilde{a}_{jk}) < \frac{\varepsilon}{5}, \quad \tilde{\rho}(\tilde{a}_{in}, \tilde{a}_{jn}) < \frac{\varepsilon}{5}$$

for i, j, k, n > N. Hence, we have

$$\tilde{\rho}(\tilde{a}_{ik}, \tilde{a}_{jk}) \leqslant \tilde{\rho}(\tilde{a}_{in}, \tilde{a}_{jn}) + \tilde{\rho}(\tilde{a}_{in}, \tilde{a}_{ik}) + \tilde{\rho}(\tilde{a}_{jn}, \tilde{a}_{jk})$$
$$\leqslant \frac{\varepsilon}{5} + \frac{\varepsilon}{5} + \frac{\varepsilon}{5} = \frac{3}{5}\varepsilon$$

for i, j, k > N. Hence, $\{\tilde{a}_{ik}\}_{i=1}^{\infty}$ is a Cauchy sequence in $F(\mathbb{R})$, by the completeness of $F(\mathbb{R})$, there exists $\tilde{a}_k(\operatorname{say}) \in F(\mathbb{R})$ such that $\tilde{\rho}(\tilde{a}_{ik}, \tilde{a}_k) \leq$

122

 $\frac{3}{5}\varepsilon$. Therefore, we have

$$\tilde{\rho}(\tilde{a}_n, \tilde{a}_k) \leqslant \tilde{\rho}(\tilde{a}_n, \tilde{a}_{in}) + \tilde{\rho}(\tilde{a}_{in}, \tilde{a}_{ik}) + \tilde{\rho}(\tilde{a}_{ik}, \tilde{a}_k)$$
$$\leqslant \frac{\varepsilon}{5} + \frac{\varepsilon}{5} + \frac{3}{5}\varepsilon = \varepsilon$$

for n, k > N. Since ε is arbitrary, $\{\tilde{a}_n\}$ is a Cauchy sequence and hence $\{\tilde{a}_n\}$ converges. Therefore, since the sequence $\{\tilde{a}_{in}\}_{i=1}^{\infty}$ has already converged to the fuzzy number $\tilde{a}_n(\text{say})$ for each $n \in \mathbb{N}$ by Theorem 2.2, $\{\tilde{a}_n\} \in \mathcal{C}$, this proves the completeness of \mathcal{C} . \Box

Let \mathcal{B} denote the set of all bounded sequences in $F(\mathbb{R})$. Let $A_i \in \mathcal{B}$, $A_i = \{\tilde{a}_{in}\}_{n=1}^{\infty}$. Since A_i is bounded for each i, there exists a convergent subsequence $\{\tilde{a}_{in_k}\}_{k=1}^{\infty}$ of $\{\tilde{a}_{in}\}_{n=1}^{\infty}$ including \tilde{a}_{in} , and hence $\{\tilde{a}_{in_k}\}_{k=1}^{\infty}$ is a Cauchy sequence. From this result and main theorem, we obtain

COROLLARY 1. $(\mathcal{B}, \tilde{\theta})$ is a fuzzy complete metric space with the fuzzy metric $\tilde{\theta}$ defined by

$$\tilde{\theta}(A_i, A_j) = \bigcup_{\lambda \in [0,1]} \lambda \left[\sup_n |(a_{in})_1^- - (a_{jn})_1^- |, \\ \sup_n \sup_{\lambda \le \eta \le 1} |(a_{in})_\eta^- - (a_{jn})_\eta^- | \lor |(a_{in})_\eta^+ - (a_{jn})_\eta^+ | \right]$$

where $A_i = \{\tilde{a}_{in}\}_{n=1}^{\infty}$ and $A_j = \{\tilde{a}_{jn}\}_{n=1}^{\infty}$ are bounded sequences in $F(\mathbb{R})$.

COROLLARY 2. $(\mathcal{C}, \tilde{\theta}) \subset (\mathcal{B}, \tilde{\theta}).$

References

- H. Choi, The completion of some fuzzy metric space, Kangweon-Kyungki Math. J. 3 (1995), 187–195.
- D. Dubois and H. Prade, Operations on fuzzy numbers, Internat. J. of System Sci. 9 (1978), 613–626.
- R. Goetschel and W. Voxman, *Topological properties of fuzzy numbers*, Fuzzy Sets and Systems 10 (1983), 87–99.
- 4. A. Kaufmann and M. Gupta, *Introduction to Fuzzy Arithmetic*, Van Nostrand Reinhold, New York, (1985).

- G. Zhang, Fuzzy distance and limit of fuzzy numbers, BUSEFAL 33 (1987), 19–30.
- 6. _____, Fuzzy limit theory of fuzzy numbers, Cybernetics and Systems (1990), World Sci. Pub., 163–170.
- 7. ____, Fuzzy continuous function and its properties, Fuzzy Sets and Systems 43 (1991), 159–171.

Department of Mathematics Kyung Hee University Yongin 449-701, Korea