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Abstract. In this paper, the concept of a weighted bν(α)-metric space is introduced as

a generalization of the bν(s)-metric space and ν-metric space. We prove some fixed point

results of the Reich-type contraction in the weighted bν(α)-metric space. Furthermore, we

generalize Reich’s theorem by extending the result to a weighted bν(α)-metric space.

1. Introduction

In 1968, Kannan studied the following fixed point theorem, which is a gen-
eralization of Banach contraction principle and the mapping satisfying the
contractive condition is known as Kannan-type contraction, which is interest-
ing since the contraction mapping does not need to be continuous [3].

Definition 1.1. Let (X, d) be a metric space, x0 ∈ X and T : X → X be a
given mapping. The sequence {xn}n∈N with

xn = Txn−1 = Tnx0
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is the Picard iterative sequence, for n ∈ N.

Theorem 1.2. ([3]) Let (X, d) be a complete metric space and let T : X → X
be a mapping such that there exists k < 1

2 satisfying

d(Tx, Ty) ≤ k (d(x, Tx) + d(y, Ty)) (1.1)

for all x, y ∈ X. Then T has a unique fixed point z ∈ X and for each x ∈ X
the iterated sequence {Tnx} converges to z.

In 1971, Reich extended the Banach and Kannan fixed point theorems as
follows [15].

Theorem 1.3. ([15]) Let (X, d) be a complete metric space and let T : X → X
be a mapping such that there exists a, b, c ≥ 0, a+ b+ c < 1 satisfying

d(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty) (1.2)

for all x, y ∈ X. Then T has a unique fixed point z ∈ X and for each x ∈ X
the iterated sequence {Tnx} converges to z.

Some authors explored the above line of thought by generalizing the type of
contraction mappings while other authors explored the idea of generalizing the
underlying space (see [11]). In 2000, Branciari in [1], introduced the following
concept.

Definition 1.4. ([1]) Let X be a set and d : X ×X → [0,∞) be a function
that satisfies the following:

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, y) ≤ d(x, u1)+d(u1, u2)+· · ·+d(uν , y) for all x, u1, u2, ..., uν , y ∈ X
such that x, u1, u2, ..., uν , y are all different.

Then (X, d) is called a ν-generalized metric.

Suzuki et al. [17], provided a proof of the following fixed point theorem
which is a generalization of the Banach contraction principle in ν-generalized
metric space. Recent articles on fixed points results on contraction and Suzuki
type mappings can be found in [4, 5, 6, 7, 8, 13].

Theorem 1.5. ([17]) Let (X, d) be a complete ν-generalized metric space and
let T be a contraction on X, that is, there exists λ ∈ [0, 1) such that

d(Tx, Ty) ≤ λd(x, y) (1.3)

for x, y ∈ X. Then T has a unique fixed point in X.
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2. Preliminaries

In [9], the authors introduced the concept of a bν(s)-metric space as follows:

Definition 2.1. ([9]) Let X be a set and d : X ×X → [0,∞) be a function
that satisfies the following:

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) there exists a real number s ≥ 1 such that

d(x, y) ≤ s[d(x, u1) + d(u1, u2) + · · ·+ d(uν , y)]

for all x, u1, u2, ..., uν , y ∈ X such that x, u1, u2, ..., uν , y are all different
and ν ∈ N.

Then (X, d) is called a bν(s)-metric space.

In this paper, we introduce the concept of a weighted bν(α)-metric space.

Definition 2.2. Let X be a set and d : X ×X → [0,∞) be a function that
satisfies the following:

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,
(iii) there exists constants αi ≥ 1 for all i = 1, 2, · · · , ν such that

d(x, y) ≤ α1d(x, u1) + α2d(u1, u2) + · · ·+ ανd(uν , y)

for all x, u1, u2, ..., uν , y ∈ X such that x, u1, u2, ..., uν , y are all different
and ν ∈ N.

Then (X, d) is called a weighted bν(α)-metric space, where α = (α1, α2, · · · , αν).

If αi = 1 for all i = 1, · · · , ν, then the weighted bν(α)-metric is a ν-
generalized metric. If αi = s for all i = 1, · · · , ν, then the weighted bν(α)-
metric is a bν(s)-generalized metric. If ν = 1, then b1(α), α = (α1, α2) is a
generalized b-metric space introduced in [16].

Example 2.3. Let X = (1, 3). If we define

d(x, y) =

{
e|x−y| , if x 6= y,

0 , if x = y,
(2.1)

then, the properties (i) and (ii) of Definition 2.2 can be easily verified. It
remains to show property (iii) holds: Let x, ui, y ∈ X for i = 1, 2, · · · , ν. Then



1090 P. Singh, S. Singh and V. Singh

by Jensen’s inequality [2],

d(x, y) = e|x−y|

≤ e|x−u1|+|u1−u2|+···+|uν−y|

= e
2

ν(ν+1)
|x−u1|+ 4

ν(ν+1)
|u1−u2|+···+ 2ν

ν(ν+1)
|uν−y|

× e
(
1− 2

ν(ν+1)

)
|x−u1|+···+

(
1− 2ν

ν(ν+1)

)
|uν−y|

≤ e2ν−2
{

2

ν(ν + 1)
e|x−u1| + · · ·+ 2ν

ν(ν + 1)
e|uν−y|

}
= α1d(x, u1) + α2d(u1, u2) + · · ·+ ανd(uν , y),

where αi = e2ν−22i
ν(ν+1) ≥ 1 for all i = 1, 2, · · · , ν and ν ≥ 1. It follows that (X, d)

is a weighted bν(α)-metric space.

In Example 2.3, if we take s = maxi=1,2,··· ,ν

{
e2ν−22i
ν(ν+1)

}
for ν ≥ 1, then d is a

bν(s)-metric.

Definition 2.4. Let {xn}n∈N be a sequence in a weighted bν(α)-metric space.

(a) The sequence {xn}n∈N is convergent to x ∈ X if

lim
n→∞

d(xn, x) = 0.

(b) The sequence {xn}n∈N is a Cauchy sequence in X if for m ∈ N,
lim
n→∞

d(xn, xn+m) = 0.

3. Main result

The following theorem is the analogue of the Reich contraction principle
found in [14], in a weighted bν(α)-metric space, where α = (α1, α2, · · · , αν).

Theorem 3.1. Let (X, d) be a complete bν(α) metric space and T : X → X
be a mapping satisfying:

d(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty) (3.1)

for all x, y ∈ X, where a, b, c are nonnegative constants with a + b + c < 1.
Then T has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary and define a sequence {xn}n∈N with x = xn−1,
y = xn, we get

d(xn, xn+1) = d(Txn−1, Txn)

≤ ad(xn−1, xn) + bd(xn−1, Txn−1) + cd(xn, Txn)

= ad(xn−1, xn) + bd(xn−1, xn) + cd(xn, xn+1).
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It follows that

(1− c)d(xn, xn+1) ≤ (a+ b)d(xn−1, xn).

That is,

d(xn, xn+1) ≤
(a+ b)

(1− c)
d(xn−1, xn), (3.2)

where µ := (a+b)
(1−c) < 1. Repeated use of inequality (3.2), we get

d(xn+1, xn) ≤ µnd(x0, x1) (3.3)

for n ≥ 1. Since µ < 1, we obtain that d(xn+1, xn)→ 0 as n→∞.
Next, we show that {xn}n∈N is a Cauchy sequence in X. For m > ν ∈ N,

we get

d(xn, xn+m) ≤ α1d(xn, xn+1) + α2d(xn+1, xn+2)

+ · · ·+ αν+1d(xn+ν , xn+ν+1)

≤ α1d(xn, xn+1) + α2d(xn+1, xn+2)

+ · · ·+ αν+1 [βν+1d(xn+ν , xn+ν+1)

+βν+2d(xn+ν+1, xn+ν+2) + · · · +βmd(xn+m−1, xn+m)]

≤ γ {d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+ν , xn+ν+1)

+ d(xn+ν+1, xn+ν+2) + · · ·+ d(xn+m−1, xn+m)}
≤ γµn

(
1 + µ+ · · ·+ µm−1

)
d(x0, x1)

≤ γ µn

1− µ
d(x0, x1),

where γ = max1≤i≤ν+1,ν+1≤j≤m {αi, αν+1βj}. Since µ < 1, it follows that
{xn}n∈N is a Cauchy sequence in X. Since (X, d) is a complete bν(α)-metric
space, there exists x′ ∈ X such that d(xn, x

′)→ 0 as n→∞.
Now, we show that x′ is a fixed point for T . Using inequality (3.1), we get

d(x′, Tx′) ≤ α1d(x′, xn+1) + α2d(xn+1, xn+2)

+ · · ·+ αd(xn+ν , Tx
′)

= α1d(x′, xn+1) + α2d(xn+1, xn+2)

+ · · ·+ ανd(Txn+ν−1, Tx
′)

≤ α1d(x′, xn+1) + α2d(xn+1, xn+2)

+ · · ·+ αν
(
ad(xn+ν−1, x

′) + bd(xn+ν−1, xn+ν) + cd(x′, Tx′)
)
.

Taking the limit as n→∞, we obtain

d(x′, Tx′) ≤ cd(x′, Tx′). (3.4)
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Since c < 1, inequality is true, only if d(x′, Tx′) = 0, that is, Tx′ = x′. For
uniqueness, let x′′ be another fixed point of T . Then

d(x′, x′′) = d(Tx′, Tx′′)

≤ ad(x′, x′′) + bd(x′, Tx′) + cd(x′′, Tx′′)

≤ ad(x′, x′′). (3.5)

This is a contradiction, unless d(x′, x′′) = 0, that is, x′ = x′′. �

We have modified the class of functions introduced by Rakotch [12], in the
following definition.

Definition 3.2. ([10, 12]) Let (X, d) be a weighted bν(α)-metric space. De-
fine the family of functions f : [0,∞) → (0, 1) which satisfies the following
properties

(i) f(x, y) = f(d(x, y)),
(ii) f is a monotonically non-decreasing continuous function.

Denote this family of altering distance functions by F.

Example 3.3. Define ψ : [0,∞)→ (0, 1) by

ψ(x) =
ex

ex + 1
.

Then ψ is a monotonically increasing function: for x ≤ y, the exponential
function is increasing thus, we get that ex ≤ ey. It follows that ex + ex+y ≤
ey+ex+y which implies that ex

1+ex ≤
ey

1+ey thus ψ is an increasing function. For

all x ≥ 0, we have that ex < 1 + ex since ex > 0, which implies that ex

1+ex < 1,

thus 0 < ψ(x) < 1. It follows that ψ ∈ F.

In this section, we generalize the Reich’s theorem found in [15, 18] to a
weighted bν(α)-metric space.

Theorem 3.4. Let (X, d) be a complete weighted bν(α)-metric space. If T :
X → X is a self-mapping and there exists a, b, c ∈ F such that

d(Tx, Ty) ≤ a(x, y)d(x, y) + b(x, y)d(x, Tx) + c(x, y)d(y, Ty) (3.6)

for all x, y ∈ X and a(x, y) + b(x, y) + c(x, y) < 1. Then T has a unique fixed
point in X.
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Proof. Let x0 ∈ X be arbitrary. Then define a sequence {xn}n∈N, as xn+1 =
Txn for n ∈ N. Then, we obtain from (3.6),

d(xn, xn+1) = d(Txn−1, Txn)

≤ a(xn−1, xn)d(xn−1, xn) + b(xn−1, xn)d(xn−1, Txn−1)

+ c(xn−1, xn)d(xn, Txn)

= a(xn−1, xn)d(xn−1, xn)

+ b(xn−1, xn)d(xn−1, xn) + c(xn−1, xn)d(xn, xn+1).

It follows that

(1− c(xn−1, xn))d(xn, xn+1) ≤ (a(xn−1, xn) + b(xn−1, xn))

× d(xn−1, xn)d(xn, xn+1)

≤ (a(xn−1, xn) + b(xn−1, xn))

(1− c(xn−1, xn))
d(xn−1, xn).

If f(xn−1, xn) = (a(xn−1,xn)+b(xn−1,xn))
(1−c(xn−1,xn))

, then 0 < f(xn−1, xn) < 1. It follows

that

d(xn, xn+1) ≤ f(xn−1, xn)d(xn−1, xn). (3.7)

Repeated use of (3.7), we get

d(xn, xn+1) ≤ f(xn−1, xn)d(xn−1, xn)

...

≤ f(xn−1, xn)f(xn−2, xn−1) · · · f(x0, x1)d(x0, x1). (3.8)

Now, if d(xk, xk+1) ≥ ε0 for some ε0 > 0 and k = 0, 1, 2, · · · , n− 1, then by
the monotonicity of f , it follows that f(d(xk, xk+1)) ≤ f(ε0). Hence, we get

d(xn, xn+1) ≤ fn(ε0)d(x0, x1).

Since 0 < fn(ε0) < 1, then it follows that d(xn, xn+1)→ 0 as n→∞.
Next, we show that {xn}n∈N is a Cauchy sequence in X. For m > ν ∈ N,

we get

d(xn, xn+m) ≤ α1d(xn, xn+1) + α2d(xn+1, xn+2)

+ · · ·+ αν+1d(xn+ν , xn+ν+1)

≤ α1d(xn, xn+1) + α2d(xn+1, xn+2)

+ · · ·+ αν+1 [βν+1d(xn+ν , xn+ν+1)

+βν+2d(xn+ν+1, xn+ν+2) + · · ·+ βmd(xn+m−1, xn+m)]
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≤ γ {d(xn, xn+1) + d(xn+1, xn+2)

+ · · ·+ d(xn+ν , xn+ν+1) + d(xn+ν+1, xn+ν+2)

+ · · ·+ d(xn+m−1, xn+m)}
≤ γfn(ε0)

(
1 + f(ε0) + · · ·+ fm−1(ε0)

)
d(x0, x1)

≤ γ fn(ε0)

1− f(ε0)
d(x0, x1),

where γ = max1≤i≤ν+1,ν+1≤j≤m {αi, αν+1βj}. Since 0 < f(ε0) < 1, it follows
that {xn}n∈N is a Cauchy sequence in X. Since (X, d) is a complete bν(α)-
metric space, there exists x′ ∈ X such that d(xn, x

′)→ 0 as n→∞.
Now, we show that x′ is a fixed point for T . Using inequality (3.6), we get

d(x′, Tx′) ≤ α1d(x′, xn+1) + α2d(xn+1, xn+2) + · · ·+ αd(xn+ν , Tx
′)

= α1d(x′, xn+1) + α2d(xn+1, xn+2) + · · ·+ ανd(Txn+ν−1, Tx
′)

≤ α1d(x′, xn+1) + α2d(xn+1, xn+2)

+ · · ·+ αν
(
a(xn+ν−1, x

′)d(xn+ν−1, x
′)

+b(xn+ν−1, x
′)d(xn+ν−1, xn+ν) +c(xn+ν−1, x

′)d(x′, Tx′)
)
.

Taking the limit as n→∞, we obtain

d(x′, Tx′) ≤ c(x′, x′)d(x′, Tx′). (3.9)

Since c < 1, inequality is true, only if d(x′, Tx′) = 0, that is, Tx′ = x′.
For uniqueness, let x′′ be another fixed point of T . Then

d(x′, x′′) = d(Tx′, Tx′′)

≤ a(x′, x′′)d(x′, x′′)+; b(x′, x′′)d(x′, Tx′) + c(x′, x′′)d(x′′, Tx′′)

≤ a(x′, x′′)d(x′, x′′). (3.10)

Inequality (3.10) is a contradiction, unless d(x′, x′′) = 0, that is, x′ = x′′. �
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