• 제목/요약/키워드: metric connection

검색결과 154건 처리시간 0.019초

SUBMANIFOLDS OF AN ALMOST r-PARACONTACT RIEMANNIAN MANIFOLD ENDOWED WITH A QUARTER-SYMMETRIC NON-METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok;Haseeb, Abdul
    • 충청수학회지
    • /
    • 제24권1호
    • /
    • pp.91-104
    • /
    • 2011
  • We define a quarter-symmetric non-metric connection in an almost r-paracontact Riemannian manifold and we consider the submanifolds of an almost r-paracontact Riemannian manifold endowed with a quarter-symmetric non-metric connection. We also obtain the Gauss, Codazzi and Weingarten equations and the curvature tensor for the submanifolds of an almost r-paracontact Riemannian manifold endowed with a quarter-symmetric non-metric connection.

ON SEMI-INVARIANT SUBMANIFOLDS OF A NEARLY KENMOTSU MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok
    • 충청수학회지
    • /
    • 제23권2호
    • /
    • pp.257-266
    • /
    • 2010
  • We define a semi-symmetric non-metric connection in a nearly Kenmotsu manifold and we study semi-invariant submanifolds of a nearly Kenmotsu manifold endowed with a semi-symmetric non-metric connection. Moreover, we discuss the integrability of distributions on semi-invariant submanifolds of a nearly Kenmotsu manifold with a semi-symmetric non-metric connection.

ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS WITH RESPECT TO SEMI-SYMMETRIC METRIC CONNECTION

  • Pahan, Sampa
    • 충청수학회지
    • /
    • 제34권3호
    • /
    • pp.235-251
    • /
    • 2021
  • The aim of the present paper is to study 3-dimensional trans-Sasakian manifold with respect to semi-symmetric metric connection. Firstly, we prove that extended generalized M-projective 𝜙-recurrent 3-dimensional trans-Sasakian manifold with respect to semi-symmetric metric connection is an 𝜂-Einstein manifold with respect to Levi-Civita connection under some certain conditions. Later we study some curvature properties of 3-dimensional trans-Sasakian manifold admitting the above connection.

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD WITH AN (ℓ, m)-TYPE CONNECTION

  • Jin, Dae Ho
    • 대한수학회지
    • /
    • 제55권5호
    • /
    • pp.1075-1089
    • /
    • 2018
  • We define a new connection on semi-Riemannian manifolds, which is a non-symmetric and non-metric connection. We say that this connection is an (${\ell}$, m)-type connection. Semi-symmetric non-metric connection and non-metric ${\phi}$-symmetric connection are two important examples of this connection such that (${\ell}$, m) = (1, 0) and (${\ell}$, m) = (0, 1), respectively. In this paper, we study lightlike hypersurfaces of an indefinite trans-Sasakian manifold with an (${\ell}$, m)-type connection.

η-RICCI SOLITONS ON TRANS-SASAKIAN MANIFOLDS WITH QUARTER-SYMMETRIC NON-METRIC CONNECTION

  • Bahadir, Oguzhan;Siddiqi, Mohd Danish;Akyol, Mehmet Akif
    • 호남수학학술지
    • /
    • 제42권3호
    • /
    • pp.601-620
    • /
    • 2020
  • In this paper, firstly we discuss some basic axioms of trans Sasakian manifolds. Later, the trans-Sasakian manifold with quarter symmetric non-metric connection are studied and its curvature tensor and Ricci tensor are calculated. Also, we study the η-Ricci solitons on a Trans-Sasakian Manifolds with quartersymmetric non-metric connection. Indeed, we investigated that the Ricci and η-Ricci solitons with quarter-symmetric non-metric connection satisfying the conditions ${\tilde{R}}.{\tilde{S}}$ = 0. In a particular case, when the potential vector field ξ of the η-Ricci soliton is of gradient type ξ = grad(ψ), we derive, from the η-Ricci soliton equation, a Laplacian equation satisfied by ψ. Finally, we furnish an example for trans-Sasakian manifolds with quarter-symmetric non-metric connection admitting the η-Ricci solitons.

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE KAEHLER MANIFOLD WITH A SYMMETRIC METRIC CONNECTION OF TYPE (ℓ, m)

  • Jin, Dae Ho
    • 대한수학회보
    • /
    • 제53권4호
    • /
    • pp.1171-1184
    • /
    • 2016
  • We define a new connection on semi-Riemannian manifolds, which is called a symmetric connection of type (${\ell}$, m). Semi-symmetric connection and quarter-symmetric connection are two examples of this connection such that $({\ell},m)=(1,0)$ and $({\ell},m)=(0,1)$ respectively. In this paper, we study lightlike hypersurfaces of an indefinite Kaehler manifold endowed with a symmetric metric connection of type (${\ell}$, m).

STUDY OF GRADIENT SOLITONS IN THREE DIMENSIONAL RIEMANNIAN MANIFOLDS

  • Biswas, Gour Gopal;De, Uday Chand
    • 대한수학회논문집
    • /
    • 제37권3호
    • /
    • pp.825-837
    • /
    • 2022
  • We characterize a three-dimensional Riemannian manifold endowed with a type of semi-symmetric metric P-connection. At first, it is proven that if the metric of such a manifold is a gradient m-quasi-Einstein metric, then either the gradient of the potential function 𝜓 is collinear with the vector field P or, λ = -(m + 2) and the manifold is of constant sectional curvature -1, provided P𝜓 ≠ m. Next, it is shown that if the metric of the manifold under consideration is a gradient 𝜌-Einstein soliton, then the gradient of the potential function is collinear with the vector field P. Also, we prove that if the metric of a 3-dimensional manifold with semi-symmetric metric P-connection is a gradient 𝜔-Ricci soliton, then the manifold is of constant sectional curvature -1 and λ + 𝜇 = -2. Finally, we consider an example to verify our results.

ALMOST α-COSYMPLECTIC f-MANIFOLDS ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Beyendi, Selahattin;Aktan, Nesip;Sivridag, Ali Ihsan
    • 호남수학학술지
    • /
    • 제42권1호
    • /
    • pp.175-185
    • /
    • 2020
  • In this paper, we introduce almost α-Cosymplectic f-manifolds endowed with a semi-symmetric non-metric connection and give some general results concerning the curvature of such connection. In particular, we study some curvature properties of an almost α-cosymplectic f-manifold equipped with semi-symmetric non-metric connection.

LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Shin, Jong Moon
    • East Asian mathematical journal
    • /
    • 제31권1호
    • /
    • pp.33-40
    • /
    • 2015
  • We study the geometry of r-lightlike submanifolds M of a semi-Riemannian manifold $\bar{M}$ with a semi-symmetric non-metric connection subject to the conditions; (a) the screen distribution of M is totally geodesic in M, and (b) at least one among the r-th lightlike second fundamental forms is parallel with respect to the induced connection of M. The main result is a classification theorem for irrotational r-lightlike submanifold of a semi-Riemannian manifold of index r admitting a semi-symmetric non-metric connection.

CONFORMAL RICCI SOLITON ON PARACONTACT METRIC (k, 𝜇)-MANIFOLDS WITH SCHOUTEN-VAN KAMPEN CONNECTION

  • Pardip Mandal;Mohammad Hasan Shahid;Sarvesh Kumar Yadav
    • 대한수학회논문집
    • /
    • 제39권1호
    • /
    • pp.161-173
    • /
    • 2024
  • The main object of the present paper is to study conformal Ricci soliton on paracontact metric (k, 𝜇)-manifolds with respect to Schouten-van Kampen connection. Further, we obtain the result when paracontact metric (k, 𝜇)-manifolds with respect to Schouten-van Kampen connection satisfying the condition $^*_C({\xi},U){\cdot}^*_S=0$. Finally we characterized concircular curvature tensor on paracontact metric (k, 𝜇)-manifolds with respect to Schouten-van Kampen connection.