SUBMANIFOLDS OF AN ALMOST r-PARACONTACT RIEMANNIAN MANIFOLD ENDOWED WITH A QUARTER-SYMMETRIC NON-METRIC CONNECTION

Mobin Ahmad*, Jae-Bok Jun**, and Abdul Haseeb***

ABSTRACT. We define a quarter-symmetric non-metric connection in an almost r-paracontact Riemannian manifold and we consider the submanifolds of an almost r-paracontact Riemannian manifold endowed with a quarter-symmetric non-metric connection. We also obtain the Gauss, Codazzi and Weingarten equations and the curvature tensor for the submanifolds of an almost r-paracontact Riemannian manifold endowed with a quarter-symmetric non-metric connection.

1. Introduction

In [9], R. S. Mishra studied almost complex and almost contact submanifolds. And in [3], S. Ali and R. Nivas considered submanifolds of a Rimannian manifold with a quarter-symmetric connection. Some properties of submanifolds of a Riemannian manifold with a quarter-symmetric semi-metric connection were studied in [6] by L. S. Dass etc. Moreover, in [8], I. Mihai and K. Matsumoto studied the submanifolds of an almost r-paracontact Riemannian manifold of P-Sasakian type.

Let ∇ be a linear connection in an *n*-dimensional differentiable manifold M. The torsion tensor T and the curvature tensor R of ∇ are given respectively by

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y],$$

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

Received December 31, 2010; Accepted February 15, 2011.

²⁰¹⁰ Mathematics Subject Classification: Primary $53\mathrm{C}05,\,53\mathrm{D}12.$

Key words and phrases: hypersurfaces, submanifolds, almost r-paracontact manifold, quarter-symmetric non-metric connection, Gauss, Weingarten and Codazzi equations.

Correspondence should be addressed to Jae-Bok Jun, jbjun@kookmin.ac.kr.

The connection ∇ is symmetric if its torsion tensor T vanishes, otherwise it is non-symmetric. The connection ∇ is metric connection if there is a Riemannian metric g in M such that $\nabla g = 0$, otherwise it is non-metric. It is well known that a linear connection is symmetric and metric if it is Levi-Civita connection.

In [7], S. Golab introduced the idea of a quarter-symmetric linear connection if its torsion tensor T is of the form

$$T(X,Y) = u(Y)\psi X - u(X)\psi Y,$$

where u is a 1-form and ψ is a tensor field of type (1,1). In [10], R. S. Mishra and S. N. Pandey considered a quarter-symmetric metric connection and studied some of its properties. In [1], [2], [4], [11], [12] and [13], some kinds of quarter-symmetric metric connections were studied.

Let M be an n-dimensional Riemannian manifold with a positive definite metric g. If there exist a tensor field ψ of type (1,1), r-vector fields $\xi_1, \xi_2, ..., \xi_r \ (n > r), \ r \ 1$ -forms $\eta^1, \eta^2, ..., \eta^r$ such that

- (i) $\eta^{\alpha}(\xi_{\beta}) = \delta^{\alpha}_{\beta}$, $\alpha, \beta \in (r) = \{1, 2, ..., r\}$,
- (ii) $\psi^2(X) = X \eta^{\alpha}(X)\xi_{\alpha}$,
- (iii) $\eta^{\alpha}(X) = g(X, \xi_{\alpha}), \quad \alpha \in (r),$ (iv) $g(\psi X, \psi Y) = g(X, Y) \Sigma_{\alpha} \eta^{\alpha}(X) \eta^{\alpha}(Y),$

where X and Y are vector fields on M and $a^{\alpha}b_{\alpha} \stackrel{\text{def}}{=} \Sigma_{\alpha}a^{\alpha}b_{\alpha}$, then the structure $\Sigma = (\psi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ is said to be an almost r-paracontact Riemannian structure on M and M is an almost r-paracontact Riemannian manifold [1].

With the help of the above conditions (i), (ii), (iii) and (iv) we have

- $\begin{aligned} & (\mathbf{v}) \ \psi(\xi_\alpha) = 0, \quad \alpha \in (r), \\ & (\mathbf{v}\mathbf{i}) \ \eta^\alpha \circ \psi = 0, \quad \alpha \in (r), \end{aligned}$
- (vii) $\Psi(X,Y) \stackrel{\text{def}}{=} g(\psi X,Y) = g(X,\psi Y).$

An almost r-paracontact Riemannian manifold M with a structure $\Sigma = (\psi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ is said to be of S-paracontact type [1] if

$$\Psi(X,Y) = (\nabla_Y^* \eta^{\alpha})(X), \quad \alpha \in (r).$$

An almost r-paracontact Riemannian manifold M with a structure $\Sigma =$ $(\psi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ is said to be of *P-Sasakian type* if it also satisfies

$$(\nabla_Z^* \Psi)(X, Y) = -\Sigma_\alpha \eta^\alpha(X) [g(Y, Z) - \Sigma_\beta \eta^\beta(Y) \eta^\beta(Z)]$$

$$- \Sigma_{\alpha} \eta^{\alpha}(Y)[g(X,Z) - \Sigma_{\beta} \eta^{\beta}(X) \eta^{\beta}(Z)]$$

for all vector fields X, Y and Z on M [8].

The conditions given as above are equivalent respectively to

$$\psi X = \nabla_X^* \xi_\alpha, \quad \alpha \in (r)$$

and

$$(\nabla_Y^* \psi)(X) = -\sum_{\alpha} \eta^{\alpha}(X) [Y - \eta^{\alpha}(Y) \xi_{\alpha}] - [g(X, Y) - \sum_{\alpha} \eta^{\alpha}(X) \eta^{\alpha}(Y)] \sum_{\beta} \xi_{\beta}.$$

In this paper, we study quarter-symmetric non-metric connection in an almost r-paracontact Riemannian manifold. We consider the hypersurfaces and submanifolds of an almost r-paracontact Riemannian manifold endowed with a quarter-symmetric non-metric connection. We also obtain the Gauss and Codazzi equations for hypersurfaces, curvature tensor and the Weingarten equation for submanifolds of an almost r-paracontact Riemannian manifold with respect to the quarter-symmetric non-metric connection.

2. Preliminaries

Let M^{n+1} be an (n+1)-dimensional differentiable manifold of class C^{∞} and let M^n be the hypersurface in M^{n+1} by the immersion τ : $M^n \to M^{n+1}$. The differential $d\tau$ of the immersion τ is denoted by B. The vector field X in the tangent space of M^n corresponds to a vector field BX in that of M^{n+1} . Suppose that the enveloping manifold M^{n+1} is an almost r-paracontact Riemannian manifold with metric \widetilde{g} . Then the hypersurface M^n is also an almost r-paracontact Riemannian manifold with the induced metric g defined by

$$q(\psi X, Y) = \widetilde{q}(B\psi X, BY),$$

where X and Y are arbitrary vector fields and ψ is a tensor of type (1,1) on M^n . If the Riemannian manifolds M^{n+1} and M^n are both orientable, we can choose a unique vector field N defined along M^n such that

$$\widetilde{q}(B\psi X, N) = 0$$
 and $\widetilde{q}(N, N) = 1$

for arbitrary vector field X in M^n . We call this vector field as a normal vector field to the hypersurface M^n .

Now, we define a quarter-symmetric non-metric connection $\widetilde{\nabla}$ by ([1], [2])

$$(2.1) \hspace{1cm} \widetilde{\nabla}_{\widetilde{X}}\widetilde{Y} = \widetilde{\dot{\nabla}}_{\widetilde{X}}\widetilde{Y} + \widetilde{\eta}^{\alpha}(\widetilde{Y})\widetilde{\psi}\widetilde{X}$$

for arbitrary vector fields \widetilde{X} and \widetilde{Y} tangents to M^{n+1} , where $\dot{\nabla}$ denotes the Levi-Civita connection with respect to the Riemannian metric \widetilde{g} , $\widetilde{\eta}^{\alpha}$

is a 1-form, $\widetilde{\xi}_{\alpha}$ is the vector field defined by

$$\widetilde{g}(\widetilde{\xi}_{\alpha}, \widetilde{X}) = \widetilde{\eta}^{\alpha}(\widetilde{X})$$

for an arbitrary vector field \widetilde{X} of M^{n+1} . Also

$$\widetilde{g}(\widetilde{\psi}\widetilde{X},\widetilde{Y}) = \widetilde{g}(\widetilde{X},\widetilde{\psi}\widetilde{Y}),$$

where $\widetilde{\psi}$ is a tensor of type (1,1).

Now, suppose that $\Sigma = (\widetilde{\psi}, \widetilde{\xi}_{\alpha}, \widetilde{\eta}^{\alpha}, \widetilde{g})_{\alpha \in (r)}$ is an almost r-paracontact Riemannian structure on M^{n+1} , then every vector field \widetilde{X} on M^{n+1} is decomposed as

$$\widetilde{X} = BX + \lambda(X)N,$$

where λ is a 1-form on M^{n+1} and for any vector field X on M^n and normal N. Also we have b(BX) = b(X), $\psi BX = B\psi X$ and $\eta^{\alpha}(BX) = \eta^{\alpha}(X)$, where b is a 1-form on M^n .

For each $\alpha \in (r)$, we have [2]

(2.2)
$$\widetilde{\psi}BX = B\psi X + b(X)N$$
 and $\psi N = BN' + KN$,

where b(X) = g(X, N'), $\tilde{\xi}_{\alpha} = B\xi_{\alpha} + a_{\alpha}N$ and a_{α} is defined as

(2.3)
$$a_{\alpha} = \eta^{\alpha}(N), \quad \alpha \in (r).$$

Now, we define $\widetilde{\eta}^{\alpha}$ as

(2.4)
$$\widetilde{\eta}^{\alpha}(BX) = \eta^{\alpha}(X), \quad \alpha \in (r).$$

THEOREM 2.1. The connection induced on the hypersurface of a Riemannian manifold with a quarter-symmetric non-metric connection with respect to the unit normal vector is also a quarter-symmetric non-metric connection.

Proof. Let $\dot{\nabla}$ be the induced connection from $\dot{\nabla}$ on the hypersurface with respect to the unit normal vector N, then we have

(2.5)
$$\widetilde{\nabla}_{BX}BY = B(\dot{\nabla}_XY) + h(X,Y)N$$

for arbitrary vector fields X and Y on M^n , where h is the second fundamental tensor of the hypersurface M^n . Let ∇ be the connection induced on the hypersurface from $\widetilde{\nabla}$ with respect to the unit normal vector N, then we have

(2.6)
$$\widetilde{\nabla}_{BX}BY = B(\nabla_X Y) + m(X, Y)N$$

for arbitrary vector fields X and Y of M^n , m being a tensor field of type (0,2) on the hypersurface M^n .

From equation (2.1), we have

$$\widetilde{\nabla}_{BX}BY = \widetilde{\dot{\nabla}}_{BX}BY + \widetilde{\eta}^{\alpha}(BY)\widetilde{\psi}BX.$$

Using (2.2), (2.4), (2.5) and (2.6) in the above equation, we get

(2.1)
$$B(\nabla_X Y) + m(X, Y)N$$
$$= B(\dot{\nabla}_X Y) + h(X, Y)N + \eta^{\alpha}(Y)B\psi X + \eta^{\alpha}(Y)b(X)N.$$

Comparison of the tangential and normal parts in the above equation vield

$$\nabla_X Y = \dot{\nabla}_X Y + \eta^{\alpha}(Y)\psi X$$

and

(2.7)
$$m(X,Y) = h(X,Y) + \eta^{\alpha}(Y)b(X).$$

Thus we have

(2.8)
$$\nabla_X Y - \nabla_Y X - [X, Y] = \eta^{\alpha}(Y)\psi X - \eta^{\alpha}(X)\psi Y.$$

Hence the connection ∇ induced on M^n is a quarter-symmetric non-metric connection [7].

3. Totally geodesic and totally umbilical hypersurfaces

We define $\dot{\nabla}B$ and ∇B respectively by

$$(\dot{\nabla}B)(X,Y) = (\dot{\nabla}_X B)(Y) = \tilde{\dot{\nabla}}_{BX} BY - B(\dot{\nabla}_X Y)$$

and

$$(\nabla B)(X,Y) = (\nabla_X B)(Y) = \widetilde{\nabla}_{BX} BY - B(\nabla_X Y),$$

where X and Y are arbitrary vector fields on M^n . Then (2.5) and (2.6) take the form respectively

$$(\dot{\nabla}_X B)Y = h(X, Y)N$$

and

$$(\nabla_X B)Y = m(X, Y)N.$$

These are the Gauss equations with respect to the induced connection $\dot{\nabla}$ and ∇ , respectively.

Let $X_1, X_2, ..., X_n$ be n-orthonormal vector fields. Then the function

$$\frac{1}{n}\sum_{i=1}^{n}h(X_i,X_i)$$

is called the mean curvature of M^n with respect to the Riemannian connection $\dot{\nabla}$ and

$$\frac{1}{n} \sum_{i=1}^{n} m(X_i, X_i)$$

is called the *mean curvature* of M^n with respect to the quarter-symmetric non-metric connection ∇ .

From this we have following definitions:

DEFINITION 3.1. The hypersurface M^n is called *totally geodesic* of M^{n+1} with respect to the Riemannian connection ∇ if h vanishes.

DEFINITION 3.2. The hypersurface M^n is called *totally umbilical* with respect to the connection ∇ if h is proportional to the metric tensor g.

We call M^n is totally geodesic and totally umbilical with respect to the quarter-symmetric non-metric connection ∇ according as the function m vanishes and proportional to the metric g, respectively.

Now we have the following theorems:

THEOREM 3.3. In order that the mean curvature of the hypersurface M^n with respect to the Riemannian connection ∇ concides with that of M^n with respect to the quarter-symmetric non-metric connection ∇ if and only if M^n is invariant.

Proof. In view of (2.7), we have

$$m(X_i, X_i) = h(X_i, X_i) + \eta^{\alpha}(Y_i)b(X_i).$$

Summing up for i = 1, 2, ..., n and divide by n, we obtain

$$\frac{1}{n} \sum_{i=1}^{n} m(X_i, X_i) = \frac{1}{n} \sum_{i=1}^{n} h(X_i, X_i)$$

if and only if $b(X_i) = 0$, which gives the proof of our theorem. \square

THEOREM 3.4. The hypersurface M^n is totally geodesic with respect to the Riemannian connection ∇ if and only if it is totally geodesic with respect to the quarter-symmetric non-metric connection ∇ , provided that M^n is invariant.

Proof. The proof follows from (2.7) easily.

4. Gauss, Weingarten and Codazzi equations

In this section we shall obtain the Weingarten equation with respect to the quarter-symmetric non-metric connection $\widetilde{\nabla}$. For the Riemannian connection $\widetilde{\nabla}$, these equations are given by

$$(4.1) \qquad \qquad \widetilde{\nabla}_{BX} N = -BHX$$

for any vector field X in M^n , where H is a tensor field of type (1,1) of M^n defined by

$$g(HX,Y) = h(X,Y)$$

from equations (2.1), (2.2) and (2.3) we have

$$\widetilde{\nabla}_{BX}N = \widetilde{\dot{\nabla}}_{BX}N + a_{\alpha}[B(\psi X) + b(X)N].$$

Using (4.1) we have

$$\widetilde{\nabla}_{BX}N = -BMX + a_{\alpha}b(X)N,$$

where $M = H - a_{\alpha}\psi$, and X is any vector field in M^n .

Equation (4.2) is the Weingarten equation with respect to the quartersymmetric non-metric connection.

We shall find the equations of Gauss and Codazzi with respect to the quarter-symmetric non-metric connection. The curvature tensor with respect to the quarter-symmetric non-metric connection $\widetilde{\nabla}$ of M^{n+1} is

$$\widetilde{R}(\widetilde{X},\widetilde{Y})\widetilde{Z} = \widetilde{\nabla}_{\widetilde{X}}\widetilde{\nabla}_{\widetilde{Y}}\widetilde{Z} - \widetilde{\nabla}_{\widetilde{Y}}\widetilde{\nabla}_{\widetilde{X}}\widetilde{Z} - \widetilde{\nabla}_{[\widetilde{X},\widetilde{Y}]}\widetilde{Z}.$$

Putting $\widetilde{X} = BX$, $\widetilde{Y} = BY$ and $\widetilde{Z} = BZ$, we have

$$\widetilde{R}(BX, BY)BZ = \widetilde{\nabla}_{BX}\widetilde{\nabla}_{BY}BZ - \widetilde{\nabla}_{BY}\widetilde{\nabla}_{BX}BZ - \widetilde{\nabla}_{[BX, BY]}BZ.$$

By virtue of (2.6), (2.8), and (4.2), we get

$$(4.3) \quad \widetilde{R}(BX, BY)BZ = B[R(X, Y)Z + m(X, Z)MY - m(Y, Z)MX]$$

$$+[(\nabla_X m)(Y, Z) - (\nabla_Y m)(X, Z) + a_\alpha(b(X) - b(Y))$$

$$+m(\eta^\alpha(Y)\psi X - \eta^\alpha(X)\psi Y, Z)]N,$$

where $R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$ is the curvature tensor of the quarter-symmetric non-metric connection ∇ .

Substituting

$$\widetilde{R}(\widetilde{X},\widetilde{Y},\widetilde{Z},\widetilde{U}) = g(\widetilde{R}(\widetilde{X},\widetilde{Y})\widetilde{Z},\widetilde{U})$$

and

$$R(X, Y, Z, U) = g(R(X, Y)Z, U).$$

Then from (4.3), we can easily obtain that

$$(4.4) \qquad \widetilde{R}(BX, BY, BZ, BU) = R(X, Y, Z, U) + m(X, Z)h(Y, U)$$
$$-m(Y, Z)h(X, U) + a_{\alpha}(m(Y, Z)g(\psi X, U) - m(X, Z)g(\psi Y, U))$$

and

(4.5)
$$\widetilde{R}(BX, BY, BZ, N) = (\nabla_X m)(Y, Z) - (\nabla_Y m)(X, Z) + a_{\alpha}(b(X) - b(Y)) + m(\eta^{\alpha}(Y)\psi X - \eta^{\alpha}(X)\psi Y, Z).$$

Equations (4.4) and (4.5) are the equations of the Gauss and Codazzi with respect to the guarter-symmetric non-metric connection.

5. Submanifolds of co-dimensions 2

Let M^{n+1} be an (n+1)-dimensional differentiable manifold of differentiability class C^{∞} and let M^{n-1} be an (n-1)-dimensional manifold immersed in M^{n+1} by the immersion $\tau: M^{n-1} \to M^{n+1}$. We denote the differentiability $d\tau$ of the immersion τ by B, so that the vector field X in the tangent space of M^{n-1} corresponds to a vector field BX in that of M^{n+1} . Suppose that M^{n+1} is an almost r-paracontact Riemannian manifold with metric tensor \tilde{g} . Then the submanifold M^{n-1} is also an almost r-paracontact Riemannian manifold with metric tensor g such that

$$g(\psi X, Y) = \widetilde{g}(B\psi X, BY)$$

for arbitrary vector fields X, Y in M^{n-1} [3]. Let the manifolds M^{n+1} and M^{n-1} are both orientable such that

$$\widetilde{\psi}BX = B\psi X + a(X)N_1 + b(X)N_2$$

$$\widetilde{g}(B\psi X, N_1) = \widetilde{g}(B\psi X, N_2) = \widetilde{g}(N_1, N_2) = 0$$
and
$$\widetilde{g}(N_1, N_1) = \widetilde{g}(N_2, N_2) = 1$$

for arbitrary vector field X in M^{n-1} [6].

We suppose that the enveloping manifold M^{n+1} admits a quartersymmetric non-metric connection given by [1]

$$\widetilde{\nabla}_{\widetilde{Y}}\widetilde{Y} = \widetilde{\dot{\nabla}}_{\widetilde{Y}}\widetilde{Y} + \widetilde{\eta}^{\alpha}(\widetilde{Y})\widetilde{\psi}\widetilde{X}$$

for arbitrary vector field \widetilde{X} , \widetilde{Y} in M^{n-1} , $\widetilde{\nabla}$ denotes the Levi-Civita connection with respect to the Riemannian metric \widetilde{q} , $\widetilde{\eta}^{\alpha}$ is a 1-form. Let us now put

(5.1)
$$\widetilde{\psi}BX = B\psi X + a(X)N_1 + b(X)N_2$$

(5.2)
$$\widetilde{\xi}_{\alpha} = B\xi_{\alpha} + a_{\alpha}N_1 + b_{\alpha}N_2,$$

where a(X) and b(X) are 1-forms on M^{n-1} , ξ_{α} is a vector field in the tangent space on M^{n-1} and a_{α} , b_{α} are functions on M^{n-1} defined by $\eta^{\alpha}(N_1) = a_{\alpha}$, $\eta^{\alpha}(N_2) = b_{\alpha}$.

Then we have the following.

THEOREM 5.1. The connection induced on the submanifold M^{n-1} of co-dimension two of an almost r-paracontact Riemannian manifold M^{n+1} with a quarter-symmetric non-metric connection ∇ is also a quarter-symmetric non-metric connection.

Proof. Let $\dot{\nabla}$ be the connection induced on the submanifold M^{n-1} from the connection $\tilde{\dot{\nabla}}$ on the enveloping manifold with respect to unit normal vectors N_1 and N_2 , then we have [9]

$$\widetilde{\nabla}_{BX}BY = B(\dot{\nabla}_XY) + h(X,Y)N_1 + k(X,Y)N_2$$

for arbitrary vector fields X and Y in M^{n-1} , where h and k are the second fundamental tensors of M^{n-1} . Similarly, if ∇ be the connection induced on M^{n-1} from the quarter-symmetric non-metric connection $\widetilde{\nabla}$ on M^{n+1} we have

$$\widetilde{\nabla}_{BX}BY = B(\nabla_X Y) + m(X,Y)N_1 + n(X,Y)N_2,$$

where m and n being tensor fields of type (0,2) of the submanifold M^{n-1} . In view of equation (2.1), we have

$$\widetilde{\nabla}_{BX}BY = \widetilde{\dot{\nabla}}_{BX}BY + \widetilde{\eta}^{\alpha}(BY)\widetilde{\psi}(BX).$$

Using (5.1), (5.2) and (5.3), we have

$$B(\nabla_X Y) + m(X, Y)N_1 + n(X, Y)N_2 = B(\dot{\nabla}_X Y) + h(X, Y)N_1 + k(X, Y)N_2 + n^{\alpha}(Y)(B\psi X + a(X)N_1 + b(X)N_2),$$

where

$$\widetilde{\eta}^{\alpha}(BY) = \eta^{\alpha}(Y)$$
 and $\widetilde{\psi}(BX) = B\psi X + a(X)N_1 + b(X)N_2$.

Comparing tangential and normal parts we get

$$\nabla_X Y = \dot{\nabla}_X Y + \eta^{\alpha}(Y)\psi X,$$

$$(5.4)_{(a)} m(X,Y) = h(X,Y) + a(X)\eta^{\alpha}(Y),$$

$$(5.4)_{(b)} n(X,Y) = k(X,Y) + b(X)\eta^{\alpha}(Y).$$

Thus we have

$$(5.5) \qquad \nabla_X Y - \nabla_Y X - [X, Y] = \eta^{\alpha}(Y) \psi X - \eta^{\alpha}(X) \psi Y.$$

Hence the connection ∇ induced on M^{n-1} is quarter-symmetric non-metric connection.

6. Totally geodesic and totally umbilical submanifolds

Let $X_1, X_2, ..., X_{n-1}$ be (n-1)-orthonormal vector fields on the submanifold M^{n-1} . Then the function

$$\frac{1}{2(n-1)} \sum_{i=1}^{n-1} [h(X_i, X_i) + k(X_i, X_i)]$$

is called the mean curvature of M^{n-1} with respect to the Riemannian connection $\dot{\nabla}$ and

$$\frac{1}{2(n-1)} \sum_{i=1}^{n-1} [m(X_i, X_i) + n(X_i, X_i)]$$

is called the *mean curvature* of M^{n-1} with respect to the quarter-symmetric non-metric connection ∇ [6].

From this we have the following definitions.

DEFINITION 6.1. If h and k vanish separately, the submanifold M^{n-1} is called *totally geodesic* with respect to the Riemannian connection $\dot{\nabla}$.

DEFINITION 6.2. The submanifold M^{n-1} is called *totally umbilical* with respect to the connection $\dot{\nabla}$ if h and k are proportional to the metric tensor g.

We call M^{n-1} is totally geodesic and totally umbilical with respect to the quarter-symmetric non-metric connection ∇ according as the function m and n vanish separately and are proportional to the metric tensor q respectively.

THEOREM 6.3. The mean curvature of M^{n-1} with respect to the Riemannian connection $\dot{\nabla}$ coincides with that of M^{n-1} with respect to the quarter-symmetric non-metric connection ∇ if and only if

$$\sum_{i=1}^{n-1} [\eta^{\alpha}(Y_i)(a(X_i) + b(X_i))] = 0.$$

Proof. In view of (5.4), we have

$$m(X_i, X_i) + n(X_i, X_i) = h(X_i, X_i) + k(X_i, X_i) + \eta^{\alpha}(Y_i)(a(X_i) + b(X_i)).$$

Summing up for i = 1, 2,, (n - 1) and then divide it by 2(n - 1), we get

$$\frac{1}{2(n-1)}\sum_{i=1}^{n-1}[m(X_i,X_i)+n(X_i,X_i)] = \frac{1}{2(n-1)}\sum_{i=1}^{n-1}[h(X_i,X_i)+h(X_i,X_i)]$$

if and only if $\sum_{i=1}^{n-1} [\eta^{\alpha}(Y_i)(a(X_i) + b(X_i))] = 0$, which proves our assertion.

THEOREM 6.4. The submanifold M^{n-1} is totally geodesic with respect to the Riemannian connection $\dot{\nabla}$ if and only if it is totally geodesic with respect to the quarter-symmetric non-metric connection ∇ provided that a(X) = 0 and b(X) = 0.

Proof. The proof follows easily from equations $(5.4)_{(a)}$ and $(5.4)_{(b)}$.

7. Curvature tensor and Weingarten equations

For the Riemannian connection $\dot{\nabla}$, the Weingarten equations are given by [11]

$$(7.1)_{(a)} \qquad \qquad \widetilde{\nabla}_{BX} N_1 = -BHX + l(X)N_2,$$

$$(7.1)_{(b)} \qquad \qquad \widetilde{\dot{\nabla}}_{BX} N_2 = -BKX - l(X)N_1,$$

where H and K are tensor fields of type (1,1) such that g(HX,Y) = h(X,Y) and g(KX,Y) = k(X,Y). Also making use of (2.1), (2.2) and $(7.1)_{(a)}$, we get

$$\widetilde{\nabla}_{BX}N_1 = -B(H - a_\alpha \psi)X + a_\alpha(a(X)N_1 + (b(X)N_2) + l(X)N_2,$$

(7.2)
$$\widetilde{\nabla}_{BX}N_1 = -BM_1X + a_{\alpha}(a(X)N_1 + (b(X)N_2) + l(X)N_2,$$

where

$$M_1X = HX - a_{\alpha}\psi X.$$

Similarly, from (2.1), (2.2) and $(7.1)_{(b)}$, we get

(7.3)
$$\widetilde{\nabla}_{BX}N_2 = -BM_2X + b_{\alpha}(a(X)N_1 + (b(X)N_2) - l(X)N_1,$$
 where

$$M_2X = KX - b_\alpha \psi X.$$

Equations (7.2) and (7.3) are the Weingarten equations with respect to the quarter-symmetric non-metric connection $\widetilde{\nabla}$.

8. Riemannian curvature tensor for quarter-symmetric nonmetric connection.

Let $\widetilde{R}(\widetilde{X},\widetilde{Y})\widetilde{Z}$ be the Riemannian curvature tensor of the enveloping manifold M^{n+1} with respect to the quarter-symmetric non-metric connection $\widetilde{\nabla}$, then

$$\begin{split} \widetilde{R}(\widetilde{X},\widetilde{Y})\widetilde{Z} &= \widetilde{\nabla}_{\widetilde{X}}\widetilde{\nabla}_{\widetilde{Y}}\widetilde{Z} - \widetilde{\nabla}_{\widetilde{Y}}\widetilde{\nabla}_{\widetilde{X}}\widetilde{Z} - \widetilde{\nabla}_{[\widetilde{X},\widetilde{Y}]}\widetilde{Z}. \end{split}$$
 Putting $\widetilde{X} = BX$, $\widetilde{Y} = BY$ and $\widetilde{Z} = BZ$, we have
$$\widetilde{R}(BX,BY)BZ = \widetilde{\nabla}_{BX}\widetilde{\nabla}_{BY}BZ - \widetilde{\nabla}_{BY}\widetilde{\nabla}_{BX}BZ - \widetilde{\nabla}_{[BX,BY]}BZ. \end{split}$$

Using (5.3), we get

$$\widetilde{R}(BX, BY)BZ = \widetilde{\nabla}_{BX}(B(\nabla_{Y}Z) + m(Y, Z)N_{1} + n(Y, Z)N_{2})$$
$$-\widetilde{\nabla}_{BY}(B(\nabla_{X}Z) + m(X, Z)N_{1} + n(X, Z)N_{2})$$
$$-(B(\nabla_{[X,Y]}Z) + m([X,Y], Z)N_{1} + n([X,Y], Z)N_{2}).$$

Again using (5.3), (5.5), (7.2) and (7.3), we have

$$\widetilde{R}(BX, BY)BZ = BR(X, Y, Z) + B(m(X, Z)M_1Y - m(Y, Z)M_1X$$

$$+n(X, Z)M_2Y - n(Y, Z)M_2X) + m(\eta^{\alpha}(Y)\psi X - \eta^{\alpha}(X)\psi Y, Z)N_1$$

$$+n(\eta^{\alpha}(Y)\psi X - \eta^{\alpha}(X)\psi Y, Z)N_2 + ((\nabla_X m)(Y, Z) - (\nabla_Y m)(X, Z))N_1$$

$$+((\nabla_X n)(Y, Z) - (\nabla_Y n)(X, Z))N_2 + l(X)(m(Y, Z)N_2 - n(Y, Z)N_1)$$

$$-l(Y)(m(X, Z)N_2 - n(X, Z)N_1) + a_{\alpha}((a(X)N_1 + b(X)N_2)m(Y, Z)$$

$$-(a(Y)N_1 + b(Y)N_2)m(X, Z)) + b_{\alpha}((a(X)N_1 + b(X)N_2)n(Y, Z)$$

$$-(a(Y)N_1 + b(Y)N_2)n(X, Z)),$$

where R(X, Y, Z) is the Riemannian curvature tensor of the submanifold with respect to the quarter-symmetric non-metric connection ∇ .

References

- [1] M. Ahmad, J. B. Jun and A. Haseeb, Hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter-symmetric metric connection, (Accepted) Bulletin of the Korean mathematical Society.
- [2] M. Ahmad, C. Ozgur and A. Haseeb, Hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter-symmetric non-metric connection, (Communicated).
- [3] S. Ali and R. Nivas, On submanifolds of a manifold with a quarter-symmetric connection, Riv. Mat. Uni. Parma. (6)-3(2000), 11-23.
- [4] S. C. Biswas and U. C. De, Quarter-symmetric connection in an SP-Sasakian manifold, Comm. Fac. Sci. Univ. Ank. Ser. AL Math. Stat. 46 (1997), no. 1-2, 49-56.
- [5] B. Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, 1973.
- [6] L. S. Das, R. Nivas, S. Ali and M. Ahmad, Study of Submanifolds immersed in a manifold with quarter-symmetric semi-metric connection, Tensor, N. S. 65 (2004), 250-260.
- [7] S. Golab, On semi symmetric and quarter-symmetric linear connections, Tensor, N. S. 29 (1975), 249-254.
- [8] I. Mihai and K. Matsumoto, Submanifolds of an almost r-paracontact manifold of P-Sasakian type, Tensor, N. S. 48 (1989), no. 2, 136-142.
- [9] R. S. Misra, Almost complex and Almost contact submanifold, Tensor, N. S. 25 (1972), 419-433.
- [10] R. S. Misra and S. N. Pandey, On quarter-symmetric metric F-connections, Tensor, N. S. 34 (1980), 1-7.
- [11] R. Nivas and G. Verma, On quarter-symmetric non-metric connection in a Riemannian manifold, J. Rajasthan Acad. Phys. Sci. 4 (2005), no. 1, 57-68.
- [12] S. S. Pujar, A note on Lorentzian para Sasakian manifold with an LP-contact non-metric quarter-symmetric ψ-connection, Journal of the Indian Math. Soc. 70 (2003), 1-4.
- [13] M. M. Tripathi, A new connection in a Riemannian manifold, Int. Elec. J. Geo. 1 (2008), no. 1, 15-24.

*

Department of Mathematics Integral University Kursi-Road, Lucknow, 226026, India E-mail: mobinahmad@rediffmail.com

**

Department of Mathematics Kookmin University Seoul 136-702, Republic of Korea *E-mail*: jbjun@kookmin.ac.kr

Department of Mathematics Integral University Kursi-Road, Lucknow, 226026, India