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SUBMANIFOLDS OF AN ALMOST »-PARACONTACT
RIEMANNIAN MANIFOLD ENDOWED WITH A
QUARTER-SYMMETRIC NON-METRIC CONNECTION

MOBIN AHMAD*, JAE-BOK JUN**, AND ABDUL HASEEB***

ABSTRACT. We define a quarter-symmetric non-metric connection
in an almost r-paracontact Riemannian manifold and we consider
the submanifolds of an almost r-paracontact Riemannian manifold
endowed with a quarter-symmetric non-metric connection. We also
obtain the Gauss, Codazzi and Weingarten equations and the cur-
vature tensor for the submanifolds of an almost r-paracontact Rie-
mannian manifold endowed with a quarter-symmetric non-metric
connection.

1. Introduction

In [9], R. S. Mishra studied almost complex and almost contact sub-
manifolds. And in [3], S. Ali and R. Nivas considered submanifolds
of a Rimannian manifold with a quarter-symmetric connection. Some
properties of submanifolds of a Riemannian manifold with a quarter-
symmetric semi-metric connection were studied in [6] by L. S. Dass etc.
Moreover, in [8], I. Mihai and K. Matsumoto studied the submanifolds
of an almost r-paracontact Riemannian manifold of P-Sasakian type.

Let V be a linear connection in an n-dimensional differentiable mani-
fold M. The torsion tensor 7" and the curvature tensor R of V are given
respectively by

T(X,Y)=VxY - VyX — [X,Y],
R(X,Y)Z =VxVyZ —VyVxZ —VixyZ.
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The connection V is symmetric if its torsion tensor 1" vanishes, otherwise
it is non-symmetric. The connection V is metric connection if there is a
Riemannian metric g in M such that Vg = 0, otherwise it is non-metric.
It is well known that a linear connection is symmetric and metric if it is
Levi-Civita connection.

In [7], S. Golab introduced the idea of a quarter-symmetric linear
connection if its torsion tensor 7' is of the form

T(X,Y) = u(Y)$X — u(X)yY,

where u is a 1-form and v is a tensor field of type (1,1). In [10], R. S.
Mishra and S. N. Pandey considered a quarter-symmetric metric con-
nection and studied some of its properties. In [1], [2], [4], [11], [12] and
[13], some kinds of quarter-symmetric metric connections were studied.

Let M be an n-dimensional Riemannian manifold with a positive def-
inite metric g. If there exist a tensor field ¢ of type (1,1), r-vector fields
&,&,...,& (n > 1), r 1-forms n', 7%, ...,n" such that

(1) 770[(5/3) = 6%7 a?ﬁ E (r) = {1’2’ "'?r}7

(i) ¥*(X) = X = n%(X)&a,

(111) UQ(X) = g(X7€a)a o€ (T),

(iv) 9( X, 9Y) = g(X,Y) = Xan™(X)n*(Y),
where X and Y are vector fields on M and a®b, def Yaa%by, then the
structure ¥ = (w,é’a,na,g)ae(r) is said to be an almost r-paracontact
Riemannian structure on M and M is an almost r-paracontact Rie-
mannian manifold [1].

With the help of the above conditions (i), (ii), (iii) and (iv) we have

(v) (€)= 0, ace(r),

(vi)n®op =0, «a€(r),

(vil) (X,Y) & g(¥X,Y) = (X, 0Y).

An almost r-paracontact Riemannian manifold M with a structure
¥ = (¥, €M%, 9)ac(r) 18 said to be of S-paracontact type [1] if

U(X,Y) = (Vyn*)(X), ae(r)

An almost r-paracontact Riemannian manifold M with a structure X =
(¥, €0 % 9)ac(r) 1s said to be of P-Sasakian type if it also satisfies

(VZO)(X)Y) = —Zan™(X)[g(Y,2) — S0’ (V)" (2)]

— T (V)[9(X, 2) — S’ (X)n”(2)]
for all vector fields X, Y and Z on M [8].
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The conditions given as above are equivalent respectively to
X =Viéa, a€(r)
and
(Vy)(X) = =ZSan™(X)[Y =n*(Y)&a]—[g(X, Y ) =Zan™(X)n™ (V)| Es8s.

In this paper, we study quarter-symmetric non-metric connection in
an almost r-paracontact Riemannian manifold. We consider the hyper-
surfaces and submanifolds of an almost r-paracontact Riemannian mani-
fold endowed with a quarter-symmetric non-metric connection. We also
obtain the Gauss and Codazzi equations for hypersurfaces, curvature
tensor and the Weingarten equation for submanifolds of an almost r-
paracontact Riemannian manifold with respect to the quarter-symmetric
non-metric connection.

2. Preliminaries

Let M"™*! be an (n + 1)-dimensional differentiable manifold of class
C> and let M" be the hypersurface in M"*! by the immersion 7 :
M™ — Mn"+. The differential dr of the immersion 7 is denoted by
B. The vector field X in the tangent space of M"™ corresponds to a
vector field BX in that of M™!. Suppose that the enveloping manifold
M1 is an almost r-paracontact Riemannian manifold with metric g.
Then the hypersurface M" is also an almost r-paracontact Riemannian
manifold with the induced metric g defined by

g(WX,Y) = g(ByX, BY),

where X and Y are arbitrary vector fields and v is a tensor of type (1,1)
on M™. If the Riemannian manifolds M™*! and M™ are both orientable,
we can choose a unique vector field N defined along M™ such that

g(BYyX,N)=0 and g(N,N)=1
for arbitrary vector field X in M™. We call this vector field as a normal

vector field to the hypersurface M".
Now, we define a quarter-symmetric non-metric connection V by ([1],

2])
(2.1) V¥ = ViV + (V)X

for arbitrary vector fields X and Y tangents to M1, where V denotes
the Levi-Civita connection with respect to the Riemannian metric g, n®
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is a 1-form, ga is the vector field defined by
9(6a, X) = 7°(X)
for an arbitrary vector field X of M™*1. Also
gX.Y) =X, 9Y),
where 9 is a tensor of type (1,1).
Now, suppose that X = (¥, £a, 1%, §)ae(r) i an almost r-paracontact

Riemannian structure on M1, then every vector field X on M™+! is
decomposed as
X = BX + A(X)N,
where X is a 1-form on M™*! and for any vector field X on M" and
normal N. Also we have b(BX) = b(X), vBX = By X and n*(BX) =
n“(X), where b is a 1-form on M™.
For each a€(r), we have [2]

(2.2) YBX = BYX +b(X)N and ¢N = BN + KN,
where b(X) = g(X,N'), & = Bés + aaN and aq is defined as

(2.3) ag =n*(N), «a&g(r).
Now, we define n* as
(2.4) n*(BX) =n*(X), ac(r).

THEOREM 2.1. The connection induced on the hypersurface of a Rie-
mannian manifold with a quarter-symmetric non-metric connection with
respect to the unit normal vector is also a quarter-symmetric non-metric
connection.

Proof. Let V be the induced connection from V on the hypersurface
with respect to the unit normal vector N, then we have

(2.5) VixBY = B(VyY) + h(X,Y)N

for arbitrary vector fields X and Y on M™, where h is the second funda-
mental tensor of the hypersurface M™. Let V be the connection induced
on the hypersurface from V with respect to the unit normal vector NNV,
then we have

(2.6) VexBY = B(VxY)+m(X,Y)N

for arbitrary vector fields X and Y of M", m being a tensor field of type
(0,2) on the hypersurface M".
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From equation (2.1), we have

VpxBY = VpxBY +i%(BY)}BX.
Using (2.2), (2.4), (2.5) and (2.6) in the above equation, we get
B(VxY) +m(X,Y)N
1) = B(VxY) +h(X,Y)N + n*Y)ByX +n*(Y)b(X)N.

Comparison of the tangential and normal parts in the above equation
yield
VxY =VxY +n*(Y)ypX

and

(2.7) m(X,Y) =h(X,Y)+n*(Y)b(X).

Thus we have

(2.8) VxY = VyX — [X, Y] =n* (V)X —n*(X)9Y.

Hence the connection V induced on M™ is a quarter-symmetric non-
metric connection [7]. O

3. Totally geodesic and totally umbilical hypersurfaces

We define VB and VB respectively by
(VB)(X,Y) = (VxB)(Y) = VpxBY — B(VxY)

and N
(VB)(X,Y)=(VxB)(Y)=VpxBY — B(VxY),

where X and Y are arbitrary vector fields on M™. Then (2.5) and (2.6)
take the form respectively

(VxB)Y = h(X,Y)N
and
(VxB)Y =m(X,Y)N.
These are the Gauss equations with respect to the induced connection

V and V, respectively.
Let X1, Xo, ..., X, be n-orthonormal vector fields. Then the function

1 n
n;h(Xi,Xi)
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is called the mean curvature of M™ with respect to the Riemannian
connection V and

1 n
ﬁZm(Xi, X;)
=1

is called the mean curvature of M™ with respect to the quarter-symmetric
non-metric connection V.
From this we have following definitions:

DEFINITION 3.1. The hypersurface M" is called totally geodesic of
M"™1 with respect to the Riemannian connection V if h vanishes.

DEFINITION 3.2. The hypersurface M™ is called totally umbilical with
respect to the connection V if h is proportional to the metric tensor g.

We call M™ is totally geodesic and totally umbilical with respect to
the quarter-symmetric non-metric connection V according as the func-
tion m vanishes and proportional to the metric g, respectively.

Now we have the following theorems:

THEOREM 3.3. In order that the mean curvature of the hypersurface
M™ with respect to the Riemannian connection V concides with that of
M™ with respect to the quarter-symmetric non-metric connection V if
and only if M™ is invariant.

Proof. In view of (2.7), we have
m(XZ, XZ) = h(Xl, XZ) + T]Q(Y;)b(XZ)

Summing up for ¢ = 1,2, ...,n and divide by n, we obtain
nz_l (2] 1) T nz_l (23] 7

if and only if b(X;) = 0, which gives the proof of our theorem. O

THEOREM 3.4. The hypersurface M™ is totally geodesic with respect
to the Riemannian connection V if and only if it is totally geodesic with
respect to the quarter-symmetric non-metric connection V, provided
that M™" is invariant.

Proof. The proof follows from (2.7) easily. O
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4. Gauss, Weingarten and Codazzi equations

In this section we shall obtain the Weingarten equation with respect
to the quarter-symmetric non-metric connection V. For the Riemannian

connection V, these equations are given by

(4.1) VexN = —-BHX
for any vector field X in M"™, where H is a tensor field of type (1,1) of
M™ defined by
g(HX,Y) = h(X,Y)
from equations (2.1), (2.2) and (2.3) we have

VexN = VpxN + aa[B(X) + b(X)N].
Using (4.1) we have
(4.2) VexN = —BMX + anb(X)N,

where M = H — ay1), and X is any vector field in M™.

Equation (4.2) is the Weingarten equation with respect to the quarter-
symmetric non-metric connection.

We shall find the equations of Gauss and Codazzi with respect to the
quarter-symmetric non-metric connection. The curvature tensor with
respect to the quarter-symmetric non-metric connection V of M"+! is

RXVVZ = V5V3Z - V3957 - V50,7,

Putting X = BX, Y =BY and Z = BZ, we have

R(BX,BY)BZ = VpxVpyBZ — VpyVxBZ — Vipx py|BZ.
By virtue of (2.6), (2.8), and (4.2), we get

(4.3) R(BX,BY)BZ = BIR(X,Y)Z +m(X,Z)MY —m(Y, Z) M X]
+H(Vxm)(Y, Z) = (Vym)(X, Z) 4+ aa(b(X) — b(Y))
+m(n* (Y)Y X —n*(X)9Y, Z)|N,
where R(X,Y)Z = VxVyZ—-VyVxZ—V|xy]Z is the curvature tensor

of the quarter-symmetric non-metric connection V.
Substituting

R(X,Y,Z,U)=g(R(X,Y)Z,U)

and
R(X.Y, Z,U) = g(R(X,Y)Z,U).
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Then from (4.3), we can easily obtain that

(44)  R(BX,BY,BZ,BU) = R(X,Y,Z,U) +m(X, Z)h(Y,U)
_m<Y7 Z)h<X7 U) + aa(m(Yv Z)g('(ﬂX, U) - m(X7 Z)Q("va U))

and

(45)  R(BX,BY,BZ,N) = (Vxm)(Y,Z) — (Vym)(X, Z)
+aa(b(X) = b(Y)) + m(n* (Y)Y X —n*(X))Y, Z).

Equations (4.4) and (4.5) are the equations of the Gauss and Codazzi
with respect to the quarter-symmetric non-metric connection.

5. Submanifolds of co-dimensions 2

Let M™*! be an (n + 1)-dimensional differentiable manifold of differ-
entiability class C° and let M™~! be an (n — 1)-dimensional manifold
immersed in M"™*! by the immersion 7 : M"~! — M"*1. We denote the
differentiability dr of the immersion 7 by B, so that the vector field X
in the tangent space of M™~! corresponds to a vector field BX in that
of M™1. Suppose that M™*! is an almost r-paracontact Riemannian
manifold with metric tensor §g. Then the submanifold M™~! is also an
almost r-paracontact Riemannian manifold with metric tensor g such
that

g(¥X,Y) = §(BYX, BY)
for arbitrary vector fields X, Y in M™~! [3].
Let the manifolds M"™*! and M"™ ! are both orientable such that

YBX = BYX + a(X)Ny + b(X)N;
g(BYX, N1) = g(ByX, N2) = g(N1, N2) =0
and E(NlaNl) = g(NQ,NQ) =1
for arbitrary vector field X in M™~1 [6].
We suppose that the enveloping manifold M"+! admits a quarter-
symmetric non-metric connection given by [1]
VY = VeV +iP(YV)eX

for arbitrary vector field X , Y in M n=1 ¥ denotes the Levi-Civita
connection with respect to the Riemannian metric g, n® is a 1-form. Let
us now put

(5.1) YBX = BYX + a(X)N; + b(X)N,
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(5.2) €0 = Bfo + aaN1 + b Na,

where a(X) and b(X) are 1-forms on M" ™1, &, is a vector field in the
tangent space on M™ ! and a,, b, are functions on M™ ! defined by

na(Nl) = Qq, UQ(NQ) = bq.
Then we have the following.

THEOREM 5.1. The connection induced on the submanifold M™ !
of co-dimension two of an almost r-paracontact Riemannian manifold
M"™+1 with a quarter-symmetric non-metric connection V is also a quarter-
symmetric non-metric connection.

Proof. Let V be the connection induced on the submanifold M n—l

from the connection V on the enveloping manifold with respect to unit
normal vectors N; and N, then we have [9]

VexBY = B(VxY) +h(X,Y)Ny + k(X,Y)N,

for arbitrary vector fields X and Y in M"™~!, where h and k are the
second fundamental tensors of M"™~!. Similarly, if V be the connection

induced on M™~! from the quarter-symmetric non-metric connection V
on M"™*! we have

(5.3) VexBY = B(VxY) 4+ m(X,Y)N; + n(X,Y)Ny,

where m and n being tensor fields of type (0,2) of the submanifold M™~1!.
In view of equation (2.1), we have

VixBY = VpyBY +i%(BY)d(BX).

Using (5.1), (5.2) and (5.3), we have
B(VxY)+m(X,Y)Ni+n(X,Y)Ny = B(VxY)+h(X,Y )N, +k(X,Y) Ny
+n*(Y)(BYX + a(X)Ny + b(X)No),

where
7(BY) =n*(Y) and ¢(BX)= ByX + a(X)N; + b(X)Ns.
Comparing tangential and normal parts we get
VxY =VxY +n° (V)9 X,

(5.4)(a) m(X,Y)=h(X,Y)+a(X)n*(Y),

(5-4)(1;) n(X,Y)=k(X,Y) 4+ b(X)n“(Y).
Thus we have
(5.5) VxY = VyX — [X, Y] =n* (V)X —n*(X)9Y.
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Hence the connection V induced on M" ! is quarter-symmetric non-
metric connection. U

6. Totally geodesic and totally umbilical submanifolds

Let X1, Xs, ..., X;,—1 be (n — 1)-orthonormal vector fields on the sub-
manifold M™~!. Then the function

1 n—1

m—n;[h(Xi’Xi) + k(X;, X))

is called the mean curvature of M"™~! with respect to the Riemannian
connection V and

n—1

> Im(Xi, Xi) + n(Xi, X5)]

i=1

1
2(n—1)

is called the mean curvature of M™! with respect to the quarter-symmet-
ric non-metric connection V [6].
From this we have the following definitions.

DEFINITION 6.1. If h and k vanish separately, the submanifold M ”._1
is called totally geodesic with respect to the Riemannian connection V.

DEFINITION 6.2. The submanifold M "=l is called totally umbilical
with respect to the connection V if h and k are proportional to the
metric tensor g.

We call M"~! is totally geodesic and totally umbilical with respect to
the quarter-symmetric non-metric connection V according as the func-
tion m and n vanish separately and are proportional to the metric tensor
g respectively.

THEOREM 6.3. The mean curvature of M™ 1 with respect to the
Riemannian connection V coincides with that of M"™~' with respect to
the quarter-symmetric non-metric connection V if and only if

n—1

> (Vi) (a(Xi) + b(Xi))] = 0.

i=1
Proof. In view of (5.4), we have

m(Xi, X;) +n(Xi, Xi) = M(X;, X;) + k(X;, Xi) + 0% (Vi) (a(X;) + (X))
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Summing up for ¢ = 1,2, ..., (n — 1) and then divide it by 2(n — 1),
we get,

n—1 n—1
%;_DZ[W(Xi,Xi)+n(Xi,Xi)] = Q(Tll_DZ[h(Xiin)""k(Xi;Xi)]
i=1 i=1

n—1
if and only if > [n*(Y;)(a(X;)+b(X;))] = 0, which proves our assertion.

=1
]

THEOREM 6.4. The submanifold M"‘l is totally geodesic with re-
spect to the Riemannian connection V if and only if it is totally geo-

desic with respect to the quarter-symmetric non-metric connection V
provided that a(X) = 0 and b(X) = 0.

Proof. The proof follows easily from equations (5.4)(,) and (5.4)).
U

7. Curvature tensor and Weingarten equations

For the Riemannian connection V, the Weingarten equations are
given by [11]

(7.1) (a) VpxNi = —BHX + [(X)Ny,

(7.1) ) VexNo = —BKX — I(X)Ny,

where H and K are tensor fields of type (1,1) such that g(HX,Y) =
h(X,Y) and g(KX,Y) = k(X,Y). Also making use of (2.1), (2.2) and
(7.1)(a), we get

VexNi = —B(H — aqh) X + aa(a(X)Ny + (b(X)Ny) + 1(X)Na,

(7.2)  VpxNy = —BM X + aq(a(X)Ny + (b(X)Ny) + [(X) Ny,

where
MiX = HX — agb X,
Similarly, from (2.1), (2.2) and (7.1)(), we get

(7.3)  VpxNy = —BMX + ba(a(X)N1 + (b(X)N2) — I(X)N,

where

MeX = KX — b X.
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Equations (7.2) and (7.3) are the Weingarten equations with respect
to the quarter-symmetric non-metric connection V.

8. Riemannian curvature tensor for quarter-symmetric non-
metric connection.

Let R(X,Y)Z be the Riemannian curvature tensor of the envelop-
ing manifold M n+1 with respect to the quarter-symmetric non-metric
connection V, then

R(X,Y)Z =V3V3Z =VyV3Z = Vg2
Putting X = BX, Y =BY and Z = BZ, we have
R(BX,BY)BZ = VxVpyBZ — VpyVexBZ — Vigx py|BZ.

Using (5.3), we get

R(BX,BY)BZ = Vpx(B(VyZ) +m(Y,Z)Ny + n(Y, Z)Na)
—Vy (B(VxZ) +m(X, Z)Ny +n(X, Z)N,)
—(B(Vixy1Z) +m([X, Y], Z)Ny +n([X, Y], Z)Na).
Again using (5.3), (5.5), (7.2) and (7.3), we have
R(BX,BY)BZ = BR(X,Y, Z) + B(m(X, Z)MY —m(Y, Z)M, X
+n(X, Z) MY — n(Y, Z)M2X) + m(n*(Y)vX —n“(X)WY,Z) Ny
+n(n* (V)X —n*(X)9Y, Z)Na + (Vxm)(Y, Z) — (Vym)(X, Z)) Ny
+((Vxn)(Y,Z) — (Vyn)(X, Z))Na + U(X)(m(Y, Z)Na — n(Y, Z)N1)
=I(Y)(m(X, Z)N2 — n(X, Z)N1) + aa((a(X)N1 + b(X)N2)m(Y, Z)
—(a(Y)N1 +b(Y)No)m(X, Z)) + ba((a(X) N1 + b(X)No)n(Y, 2)

—(a(Y)N1 +0(Y)No)n(X, 2)),

where R(X,Y, Z) is the Riemannian curvature tensor of the submanifold
with respect to the quarter-symmetric non-metric connection V.
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