• Title/Summary/Keyword: metallic oxide

Search Result 324, Processing Time 0.027 seconds

Fabrication and Electrical Insulation Property of Thick Film Glass Ceramic Layers on Aluminum Plate for Insulated Metal Substrate (알루미늄 판상에 글라스 세라믹 후막이 코팅된 절연금속기판의 제조 및 절연특성)

  • Lee, Seong Hwan;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.39-46
    • /
    • 2017
  • This paper presents the fabrication of ceramic insulation layer on metallic heat spreading substrate, i.e. an insulated metal substrate, for planar type heater. Aluminum alloy substrate is preferred as a heat spreading panel due to its high thermal conductivity, machinability and the light weight for the planar type heater which is used at the thermal treatment process of semiconductor device and display component manufacturing. An insulating layer made of ceramic dielectric film that is stable at high temperature has to be coated on the metallic substrate to form a heating element circuit. Two technical issues are raised at the forming of ceramic insulation layer on the metallic substrate; one is delamination and crack between metal and ceramic interface due to their large differences in thermal expansion coefficient, and the other is electrical breakdown due to intrinsic weakness in dielectric or structural defects. In this work, to overcome those problem, selected metal oxide buffer layers were introduced between metal and ceramic layer for mechanical matching, enhancing the adhesion strength, and multi-coating method was applied to improve the film quality and the dielectric breakdown property.

High-Power Continuous-Wave Laser-Induced Damage to Complementary Metal-Oxide Semiconductor Image Sensor (고출력 CW 레이저에 의한 CMOS 영상 센서의 손상 분석)

  • Kim, Jin-Gyum;Choi, Sungho;Yoon, Sunghee;Jhang, Kyung-Young;Shin, Wan-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.105-109
    • /
    • 2015
  • This paper presents the results of an experimental analysis of the high-power laser (HPL)-induced damage to a complementary metal-oxide semiconductor (CMOS) image sensor. Although the laser-induced damages to metallic materials have been sufficiently investigated, the damages to electric-optic imaging systems, which are very sensitive to HPLs, have not been studied in detail. In this study, we experimentally analyzed the HPL-induced damages to a CMOS image sensor. A near-infrared continuous-wave (CW) fiber laser was used as the laser source. The influences of the irradiance and irradiation time on the permanent damages to a CMOS image sensor, such as the color error and breakdown, were investigated. The experimental results showed that the color error occurred first, and then the breakdown occurred with an increase in the irradiance and irradiation time. In particular, these damages were more affected by the irradiance than the irradiation time.

Effect of Alloying Elements (Cu, Al, Si) on the Electrochemical Corrosion Behaviors of TWIP Steel in a 3.5 % NaCl Solution (3.5% NaCl 수용액 내 TWIP강의 부식거동에 미치는 합금원소 (Cu, Al, Si)의 영향)

  • Kim, Si-On;Hwang, Joong-Ki;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.300-311
    • /
    • 2019
  • The corrosion behaviors of twinning-induced plasticity (TWIP) steels with different alloying elements (Cu, Al, Si) in a neutral aqueous environment were investigated in terms of the characteristics of the corrosion products formed on the steel surface. The corrosion behavior was evaluated by measuring potentiodynamic polarization test and electrochemical impedance spectroscopy. For compositional analysis of the corrosion products formed on the steel surface, an electron probe x-ray micro analyzer was also utilized. This study showed that the addition of Cu to the steel contributed to the increase in corrosion resistance to a certain extent by the presence of metallic Cu in discontinuous form at the oxide/steel interface. Compared to the case of steel with Cu, the Al-bearing specimen exhibited much higher polarization resistance and lower corrosion current by the formation of a thin Al-enriched oxide layer. On the other hand, Si addition (3.0 wt%) to the steel led to an increase in grain size, which was twice as large as that of the other specimens, resulting in a deterioration of the corrosion resistance. This was closely associated with the localized corrosion attacks along the grain boundaries by the formation of a galvanic couple with a large cathode-small anode.

Ferroelectric Properties of Bi4Ti3O12 Thin Films Deposited on Si and SrTiO3 Substrates According to Crystal Structure and Orientation (Si 및 SrTiO3 기판 위에 증착된 Bi4Ti3O12 박막의 결정구조 및 배향에 따른 강유전 특성)

  • Lee, Myung-Bok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.543-548
    • /
    • 2018
  • Ferroelectric $Bi_4Ti_3O_{12}$ films were deposited on $SrTiO_3(100)$ and Si(100) substrate by using conductive $SrRuO_3$ films as underlayer, and their ferroelectric and electrical properties were investigated depending on crystal structure and orientation. C-axis oriented $Bi_4Ti_3O_{12}$ films were grown on well lattice-matched pseudo-cubic $SrRuO_3$ films deposited on $SrTiO_3(100)$ substrate, while random-oriented polycrystalline $Bi_4Ti_3O_{12}$ films were grown on $SrRuO_3$ films deposited on Si(100) substrate. The random-oriented polycrystalline film showed a good ferroelectric hysteresis property with remanent polarization ($P_r$) of $9.4{\mu}C/cm^2$ and coercive field ($E_c$) of 84.9 kV/cm, while the c-axis oriented film showed $P_r=0.64{\mu}C/cm^2$ and $E_c=47kV/cm$ in polarizaion vs electric field curve. The c-axis oriented $Bi_4Ti_3O_{12}$ film showed a dielectric constant of about 150 and lower thickness dependence in dielectric constant compared to the random-oriented film. Furthermore, the c-axis oriented $Bi_4Ti_3O_{12}$ film showed leakage current lower than that of the polycrystalline film. The difference of ferroelectric properties in two films was explained from the viewpoint of depolarization effect due to orientation of spontaneous polarization and layered crystal structure of bismuth-base ferroelectric oxide.

Oxidation and Electrical Properties of (LaSr)(CrCo)3Coated STS-430 Steel by Plasma Spraying (플라즈마 스프레이 (LaSr)(CrCo)O3 코팅된 STS-430 합금의 고온 산화 거동 및 전기적 특성)

  • Lee, Chung-Hwan;Lim, Kyeong-Tae;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.185-190
    • /
    • 2009
  • Fe-Cr steels are the most promising candidate for interconnect in solid oxide fuel cells. In this study, an effective, dense and well adherent (LaSr)(CrCo)$O_3$ [LSCC] coating layer was produced onto 430 stainless steel (STS-430) by atmospheric plasma spraying and the oxidation behavior as well as electrical properties of the LSCC coated STS-430 were investigated. A significant oxidation of pristine STS-430 occurred at $800^{\circ}C$ in air environment, leading to the formation of $Cr_2O_3$ and $FeCr_2O_4$ scale layer up to ${\sim}7{\mu}m$ after 1200h, and consequently increased an area specific resistance of $330\;m{\Omega}{\cdot}cm^2$. Although the plasma sprayed LSCC coating contained the characteristic pore network, the coated samples presented apparent advantages in reducing oxidation growth of STS-430, resulting a decrease in oxide scale thickness of ${\sim}1{\mu}m$ at $800^{\circ}C$ after 1200h. The area specific resistance of the LSCC coated STS-430 was much reduced to ${\sim}7\;m{\Omega}{\cdot}cm^2$ after exposure at $800^{\circ}C$ for 1200h, compared to that of the pristine STS-403.

Aging of Solid Fuels Composed of Zr and ZrNi Part 1: Thermal/Chemical/Spectroscopic Analysis (Zr과 ZrNi로 구성된 고체연료의 노화 연구 Part 1: 열/화학/분광학적 분석)

  • Han, Byungheon;Ryu, Jihoon;Yang, Junho;Oh, Juyoung;Gnanaprakash, K.;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.1-13
    • /
    • 2020
  • The characterization of aging of the pyrotechnic device is conducted thermally, chemically, and spectroscopically. The device is comprised of two parts: (i) igniter composed of Zr and (ii) pyrotechnic delay composed of ZrNi alloy. The thermally induced chemical reaction is identified through Differential Scanning Calorimetry (DSC) and Thermogravimetry Analysis (TGA). The peak deconvolution of the themo-chemical data is used to estimate the enthalpy change of each metallic fuel component. Laser Induced Breakdown Spectroscopy (LIBS) and X-ray Photoelectron Spectroscopy (XPS) are used for chemical species analysis. The decomposition of oxidants by moisture significantly affected the fuel aging, and the formation of oxide film and metal oxide on the fuel surface gave rise to the thermal energy decrease.

Development of kW Class SOFC Systems for Combined Heat and Power Units at KEPRI

  • Lee, Tae-Hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Keun-Bae;Yoo, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.772-776
    • /
    • 2008
  • The Korea Electric Power Research Institute (KEPRI) has been developing planar solid oxide fuel cells (SOFCs) and power systems for combined heat and power (CHP) units. The R&D work includes solid oxide fuel cell (SOFC) materials investigation, design and fabrication of single cells and stacks, and kW class SOFC CHP system development. Anode supported cells composed of Ni-YSZ/FL/YSZ/LSCF were enlarged up to $15{\times}15\;cm^2$ and stacks were manufactured using $10{\times}10\;cm^2$ cells and metallic interconnects such as ferritic stainless steel. The first-generation system had a 37-cell stack and an autothermal reformer for use with city gas. The system showed maximum stack power of about $1.3\;kW_{e,DC}$ and was able to recover heat of $0.57{\sim}1.2\;kW_{th}$ depending on loaded current by making hot water. The second-generation system was composed of an improved 48-cell stack and a prereformer (or steam reformer). The thermal management subsystem design including heat exchangers and insulators was also improved. The second-generation system was successfully operated without any external heat source. Under self-sustainable operation conditions, the stack power was about $1.3\;kW_{e,DC}$ with hydrogen and $1.2\;kW_{e,DC}$ with city. The system also recuperated heat of about $1.1\;kW_{th}$ by making hot water. Recently KEPRI manufactured a 2kW class SOFC stack and a system by scaling up the second-generation 1kW system and will develop a 5kW class CHP system by 2010.

Recovery of manganese compounds from electric arc furnace dust by Aluminothermy Process (테르밋 반응을 이용한 페로망간 전기로 분진의 재활용에 관한 연구)

  • Ha, Tae-Young;Jo, Young-Min;Park, Young-Koo;Kim, Youn-Che
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • The properties of dust collected from electric arc furnace of ferro manganese production units was investigated, and also the metallic manganese was recovered from the dust by aluminothermy process. The ferromanganese dust collected from electric arc furnace contained about 15% of manganese oxide ($Mn_3O_4$) and 9% of carbon as the contaminant, and have a 5um of 50% median diameter and irregular particle shape. The carbon contaminant in the dust could be reduced until about 0.1~0.5% level by roasting in the air at a temperature of 600~900C for 60minutes. The recovery of manganese could not be carried out using only ferromanganese dust from electric arc furnace by aluminothermy process, but the ferromanganese which contained manganese of about 92% and iron of about 5% could be obtained from the mixture of ferromanganese dusts from electric arc furnace and converter. The best mixing condition of dust fixed at electric arc furnace dust / converter dust ratio of 1:9 and 2:8, and the mixing rato of 3:7 or more could not separated the metal and slag from the reactant after aluminothermy reaction.

5kg $U_{3}O_{8}$ Batch Scale Mock-up Test for the Electrochemical Reduction of Spent Oxide Fuel (사용후핵연료의 전기화학적 금속전환을 위한 5kg $U_{3}O_{8}$ Batch 규모의 Mock-up 시험)

  • 오승철;허진목;홍순석;이원경;서중석;박승원
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.47-53
    • /
    • 2003
  • An electrochemical reduction technology which can reduce the decay heat, volume, and radioactivity of spent fuel by a factor of quarter through converting oxide type spent fuel to a metallic form in a molten salt was developed and tests in a scale of g (3- 40g $U_{3}O_{8}$ batch) have been carried out by Korea Atomic Energy Research Institute. In this research, the reaction apparatus in a scale of 5kg $U_{3}O_{8}$ batch was designed and manufactured for the mock-up test to obtain design data of the apparatus which will be used for the hot test in a scale of 20kg $U_{3}O_{8}$ batch. The electrochemical reduction behavior of $U_{3}O_{8}$ was analyzed regarding the operational factors and fresh $U_{3}O_{8}$ powder was metallized with a more than 99% yield verifying the process validity of electrochemical reduction process in a kg scale.

  • PDF

Themochemical Cycles for Hydrogen Production from Water (열화학적 수소 제조 기술)

  • Kim J.W.;Park C.S.;Hwang G.J.;Bae K.K.
    • Journal of Energy Engineering
    • /
    • v.15 no.2 s.46
    • /
    • pp.107-117
    • /
    • 2006
  • The status of water splitting thermochemical cycle for hydrogen production was reviewed in this article. Mass production of hydrogen could be possible using the thermochemical process which is similar to the concept of conventional chemical reaction system if the high temperature heat source is available. The mediators (chemicals and reagents) should be used to split chemically stable water, and should be recycled in a closed cycle in order to be environmentally acceptable. Though there is no process to reach commercial stage, IS cycle, two-step cycles based on metallic oxide such as ZnO/Zn, $Fe_3O_4/FeO$ and the associated cycles are attracted due to their possibilities of application. Development of materials for high temperature and/or corrosive conditions during thermochemical process is still important topic in some thermochemical processes.