DOI QR코드

DOI QR Code

Oxidation and Electrical Properties of (LaSr)(CrCo)3Coated STS-430 Steel by Plasma Spraying

플라즈마 스프레이 (LaSr)(CrCo)O3 코팅된 STS-430 합금의 고온 산화 거동 및 전기적 특성

  • Lee, Chung-Hwan (Department of Nanomaterials Engineering, Chungnam National University) ;
  • Lim, Kyeong-Tae (Department of Nanomaterials Engineering, Chungnam National University) ;
  • Baik, Kyeong-Ho (Department of Nanomaterials Engineering, Chungnam National University)
  • Published : 2009.06.28

Abstract

Fe-Cr steels are the most promising candidate for interconnect in solid oxide fuel cells. In this study, an effective, dense and well adherent (LaSr)(CrCo)$O_3$ [LSCC] coating layer was produced onto 430 stainless steel (STS-430) by atmospheric plasma spraying and the oxidation behavior as well as electrical properties of the LSCC coated STS-430 were investigated. A significant oxidation of pristine STS-430 occurred at $800^{\circ}C$ in air environment, leading to the formation of $Cr_2O_3$ and $FeCr_2O_4$ scale layer up to ${\sim}7{\mu}m$ after 1200h, and consequently increased an area specific resistance of $330\;m{\Omega}{\cdot}cm^2$. Although the plasma sprayed LSCC coating contained the characteristic pore network, the coated samples presented apparent advantages in reducing oxidation growth of STS-430, resulting a decrease in oxide scale thickness of ${\sim}1{\mu}m$ at $800^{\circ}C$ after 1200h. The area specific resistance of the LSCC coated STS-430 was much reduced to ${\sim}7\;m{\Omega}{\cdot}cm^2$ after exposure at $800^{\circ}C$ for 1200h, compared to that of the pristine STS-403.

Keywords

References

  1. W. Z. Zhu and S. C. Deevi: Mater. Sci. Eng. A, A348 (2003) 227 https://doi.org/10.1016/S0921-5093(02)00736-0
  2. J. M. Ralph, A. C. Schoeler, and M. Krumpelt: J. Mater. Sci., 36 (2001) 1161 https://doi.org/10.1023/A:1004881825710
  3. Z. Yang, K. S. Weil, D. M. Paxton and J. W. Srevenson: J. Electrochem. Soc., 150 (2003) A1188 https://doi.org/10.1149/1.1595659
  4. K. Fujita, K, Ogasawara, Y, Matsuzaki and T. Sakurai: J. Power Sour., 131 (2004) 261 https://doi.org/10.1016/j.jpowsour.2003.12.051
  5. M. Stanislowski, J. Froitzheim, L. Niewolak, J. W. Quadakkers, K. Hilpert, T. Markus, L. Singheiser: J. Power Sour., 164 (2007) 57 https://doi.org/10.1016/j.jpowsour.2006.08.013
  6. P. Gannona, M. Deiberta, P. Whitea, R. Smitha, H. Chena, W. Priyanthaa, J. Lucasa and V. Gorokhovskyb: Int. J. Hyd. Ener., 33 (2008) 3991 https://doi.org/10.1016/j.ijhydene.2007.12.009
  7. Z. Yang, G. Xia and J. W. Srevenson: Electrochem. Solid-State Lett., 8 (2005) A168 https://doi.org/10.1149/1.1854122
  8. J. Choi, J. Lee, D. Park, B. Hahn and W. Yoon: J. Am. Ceram. Soc., 90 (2007) 1926 https://doi.org/10.1111/j.1551-2916.2007.01641.x
  9. L. Pawlowski: The Sience and Engineering of Thermal Spray Coatings, John Wiley & Sons (1995)
  10. S. Jiansirisomboon, K. J. D. MacKenzie, S. G. Roberts and P. S. Grant: J. Euro. Ceram. Soc., 23 (2003) 196 https://doi.org/10.1016/S0955-2219(02)00207-8
  11. K. H. Baik, P. S. Grant and B. Cantor: Acta Mater., 52 (2004) 199 https://doi.org/10.1016/j.actamat.2003.09.006
  12. P. Bengtsson and T. Johannesson, J. Therm. Spray Tech. 4 (1995) 245 https://doi.org/10.1007/BF02646967
  13. H. Kurokawa,. K. Kawamura and T. Maruyama: Solid State Ionics, 168 (2004) 13 https://doi.org/10.1016/j.ssi.2004.02.008