Browse > Article
http://dx.doi.org/10.14773/cst.2019.18.6.300

Effect of Alloying Elements (Cu, Al, Si) on the Electrochemical Corrosion Behaviors of TWIP Steel in a 3.5 % NaCl Solution  

Kim, Si-On (Department of Advanced Materials Engineering, Sunchon National University)
Hwang, Joong-Ki (School of Mechanical Engineering, Tongmyong University)
Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
Publication Information
Corrosion Science and Technology / v.18, no.6, 2019 , pp. 300-311 More about this Journal
Abstract
The corrosion behaviors of twinning-induced plasticity (TWIP) steels with different alloying elements (Cu, Al, Si) in a neutral aqueous environment were investigated in terms of the characteristics of the corrosion products formed on the steel surface. The corrosion behavior was evaluated by measuring potentiodynamic polarization test and electrochemical impedance spectroscopy. For compositional analysis of the corrosion products formed on the steel surface, an electron probe x-ray micro analyzer was also utilized. This study showed that the addition of Cu to the steel contributed to the increase in corrosion resistance to a certain extent by the presence of metallic Cu in discontinuous form at the oxide/steel interface. Compared to the case of steel with Cu, the Al-bearing specimen exhibited much higher polarization resistance and lower corrosion current by the formation of a thin Al-enriched oxide layer. On the other hand, Si addition (3.0 wt%) to the steel led to an increase in grain size, which was twice as large as that of the other specimens, resulting in a deterioration of the corrosion resistance. This was closely associated with the localized corrosion attacks along the grain boundaries by the formation of a galvanic couple with a large cathode-small anode.
Keywords
Twinning-induced plasticity steel; Corrosion; Polarization resistance; Large cathode-small anode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Grassel, L. Kruger, G. Frommeyer, and L. W. Meyer, Int. J. Plast., 16, 1391 (2000).   DOI
2 O. Bouaziz, S. Allain, C. P. Scott, P. Cugy, and D. Barbier, Curr. Opin. Solid St. M., 15, 141 (2011).   DOI
3 B. C. De Cooman, Y. Estrin, and S. K. Kim, Acta Mater., 142, 283 (2018).   DOI
4 Y. S. Chun, J. Lee, C. M. Bae, K. T. Prak, and C. S. Lee, Scr. Mater., 67, 681 (2012).   DOI
5 D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert, Mater. Sci. Eng. A, 500, 196 (2009).   DOI
6 J. E. Jin and Y. K. Lee, Acta Mater., 60, 1680 (2012).   DOI
7 H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, and P. J. Jacques, Acta Mater., 58, 2464 (2010).   DOI
8 K. G. Chin, C. Y. Kang, S. Y. Shin, S. Hong, S. Lee, H. S. Kim, K. Kim, and N. J. Kim, Mater. Sci. Eng. A, 528, 2922 (2011).   DOI
9 R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, and K. Kunishige, Scr. Mater., 59, 963 (2008).   DOI
10 S. Lee, J. Kim, S. J. Lee, and B. C. De Cooman, Scr. Mater., 65, 1073 (2011).   DOI
11 X. Peng, D. Zhu, Z. Hu, W. Yi, H. Liu, and M. Wang, Mater. Design, 45, 518 (2013).   DOI
12 S. M. Lee, S. J. Lee, S. Lee, J. H. Nam, and Y. K. Lee, Acta Mater., 144, 738 (2018).   DOI
13 M. Bobby Kannan, R. K. Singh Raman, and S. Khoddam, Corros. Sci., 50, 2879 (2008).   DOI
14 W. Wang, D. Wang, and F. Han, Mater. Lett., 248, 60 (2019).   DOI
15 X. Yuan, Y. Zhao, X. Li, and L. Chen, Mater. Sci. Technol., 33, 1555 (2017).   DOI
16 Y. S. Zhang and X. M. Zhu, Corros. Sci., 41, 1817 (1999).   DOI
17 H. Geng, X. Wu, H. Wang, and Y. Min, J. Mater. Sci., 43, 83 (2008).   DOI
18 B. Q. Hu, P. K. Bai, Z. Z. Dong, and J. Cheng, Trans. Nonferrous Met. Soc. China, 19, 149 (2009).   DOI
19 S. Suzuki, E. Matsubara, T. Komatsu, Y. Okamoto, K. Kanie, A. Muramatsu, H. Konishi, J. Mizuki, and Y. Waseda, Corros. Sci., 49, 1081 (2007).   DOI
20 B. Kim, S. Kim, and H. Kim, Adv. Mater. Sci. Eng., 2018, 1 (2018)
21 A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Metall. Mater. Trans. A, 40, 3076 (2009).   DOI
22 A. Dumay, J. P. Chateau, S. Allain, S. Migot, and O. Bouaziz, Mater. Sci. Eng. A, 483, 184 (2008).   DOI
23 B. Sun, F. Fazeli, C. Scott, N. Brodusch, R. Gauvin, and S. Yue, Acta Mater., 148, 249 (2018).   DOI
24 J. K. Hwang, Mater. Sci. Eng. A, 737, 188 (2018).   DOI
25 S. J. Lee, J. Kim, S. N. Kane, and B. C. De Cooman, Acta Mater., 59, 6809 (2011).   DOI
26 Y. N. Dastur and W. C. Leslie, Metall. Trans. A, 12, 749 (1981).   DOI
27 S. Y. Jo, J. Han, J. H. Kang, S. Kang, S. Lee, and Y. K. Lee, J. Alloy. Compd., 627, 374 (2015).   DOI
28 Y. W. Jang, J. H. Hong, and J. G. Kim, Met. Mater. Int., 15, 623 (2009).   DOI
29 A. A. Hermas, K. Ogura, and T. Adachi, Electrochem. Acta, 40, 837 (1995).   DOI
30 M. Seo, G. Hultquist, C. Leygraf, and N. Sato, Corros. Sci., 26, 949 (1986).   DOI
31 Y. S. Choi, J. J. Shim, and J. G. Kim, J. Alloy. Compd., 391, 162 (2005).   DOI
32 Z. B. Zheng and Y. G. Zheng, Corros. Sci., 112, 657 (2016).   DOI
33 G. S. Frankel, J. Electrochem. Soc., 145, 2186 (1998).   DOI
34 J. H. Park, H. S. Seo, K. Y. Kim, and S. J. Kim, J. Electrochem. Soc., 163, 791 (2016).
35 A. S. Hamada, L. P. Karjalainen, and M. A. El-Zeky, Passivation of Metals and Semiconductors and the Properties of Thin Oxide Layers, 1st ed., p. 77, P. Marcus & V. Maurice, Paris (2005).
36 I. J. Park, K. H. Jeong, J. G. Jung, C. S. Lee, and Y. K. Lee, Int. J. Hydrogen Energ., 37, 9925 (2012).   DOI
37 M. Koyama, E. Akiyama, Y. K. Lee, D. Raabe, and K. Tsuzaki, Int. J. Hydrogen Energ., 42, 12706 (2017).   DOI