• Title/Summary/Keyword: metagenomic

Search Result 141, Processing Time 0.033 seconds

Structural Characteristics of Expression Module of Unidentified Genes from Metagenome (메타게놈 유래 미규명 유전자의 발현에 관련된 특성분석)

  • Park, Seung-Hye;Jeong, Young-Su;Kim, Won-Ho;Kim, Geun-Joong;Hur, Byung-Ki
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.144-150
    • /
    • 2006
  • The exploitation of metagenome, the access to the natural extant of enormous potential resources, is the way for elucidating the functions of organism in environmental communities, for genomic analyses of uncultured microorganism, and also for the recovery of entirely novel natural products from microbial communities. The major breakthrough in metagenomics is opened by the construction of libraries with total DNAs directly isolated from environmental samples and screening of these libraries by activity and sequence-based approaches. Screening with activity-based approach is presumed as a plausible route for finding new catabolic genes under designed conditions without any prior sequence information. The main limitation of these approaches, however, is the very low positive hits in a single round of screening because transcription, translation and appropriate folding are not always possible in E. coli, a typical surrogate host. Thus, to obtain information about these obstacles, we studied the genetic organization of individual URF's(unidentified open reading frame from metagenome sequenced and deposited in GenBank), especially on the expression factors such as codon usage, promoter region and ribosome binding site(rbs), based on DNA sequence analyses using bioinformatics tools. And then we also investigated the above-mentioned properties for 4100 ORFs(Open Reading Frames) of E. coli K-12 generally used as a host cell for the screening of noble genes from metagenome. Finally, we analyzed the differences between the properties of URFs of metagenome and ORFs of E. coli. Information derived from these comparative metagenomic analyses can provide some specific features or environmental blueprint available to screen a novel biocatalyst efficiently.

Alkaliphilic Endoxylanase from Lignocellulolytic Microbial Consortium Metagenome for Biobleaching of Eucalyptus Pulp

  • Weerachavangkul, Chawannapak;Laothanachareon, Thanaporn;Boonyapakron, Katewadee;Wongwilaiwalin, Sarunyou;Nimchua, Thidarat;Eurwilaichitr, Lily;Pootanakit, Kusol;Igarashi, Yasuo;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1636-1643
    • /
    • 2012
  • Enzymatic pre-bleaching by modification of pulp fibers with xylanases is an attractive approach to reduce the consumption of toxic bleaching chemicals in the paper industry. In this study, an alkaliphilic endoxylanase gene was isolated from metagenomic DNA of a structurally stable thermophilic lignocellulose-degrading microbial consortium using amplification with conserved glycosyl hydrolase family 10 primers and subsequent genome walking. The full-length xylanase showed 78% sequence identity to an endo-${\beta}$-1,4-xylanase of Clostridium phytofermentans and was expressed in a mature form with an N-terminal His6 tag fusion in Escherichia coli. The recombinant xylanase Xyn3F was thermotolerant and alkaliphilic, working optimally at $65-70^{\circ}C$ with an optimal pH at 9-10 and retaining >80% activity at pH 9, $60^{\circ}C$ for 1 h. Xyn3F showed a $V_{max}$ of 2,327 IU/mg and $K_m$ of 3.5 mg/ml on birchwood xylan. Pre-bleaching of industrial eucalyptus pulp with no prior pH adjustment (pH 9) using Xyn3F at 50 IU/g dried pulp led to 4.5-5.1% increase in final pulp brightness and 90.4-102.4% increase in whiteness after a single-step hypochlorite bleaching over the untreated pulp, which allowed at least 20% decrease in hypochlorite consumption to achieve the same final bleaching indices. The alkaliphilic xylanase is promising for application in an environmentally friendly bleaching step of kraft and soda pulps with no requirement for pH adjustment, leading to improved economic feasibility of the process.

Fine-Scale Population Structure of Accumulibacter phosphatis in Enhanced Biological Phosphorus Removal Sludge

  • Wang, Qian;Shao, Yongqi;Huong, Vu Thi Thu;Park, Woo-Jun;Park, Jong-Moon;Jeon, Che-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1290-1297
    • /
    • 2008
  • To investigate the diversities of Accumulibacter phosphatis and its polyhydroxyalkanoate (PHA) synthase gene (phaC) in enhanced biological phosphorus removal (EBPR) sludge, an acetate-fed sequencing batch reactor was operated. Analysis of microbial communities using fluorescence in situ hybridization and 16S rRNA gene clone libraries showed that the population of Accumulibacter phosphatis in the EBPR sludge comprised more than 50% of total bacteria, and was clearly divided into two subgroups with about 97.5% sequence identity of the 16S rRNA genes. PAO phaC primers targeting the phaC genes of Accumulibacter phosphatis were designed and applied to retrieve fragments of putative phaC homologs of Accumulibacter phosphatis from EBPR sludge. PAO phaC primers targeting $G_{1PAO},\;G_{2PAO},\;and\;G_{3PAO}$ groups produced PCR amplicons successfully; the resulting sequences of the phaC gene homologs were diverse, and were distantly related to metagenomic phaC sequences of Accumulibacter phosphatis with 75-98% DNA sequence identities. Degenerate NPAO (non-PAO) phaC primers targeting phaC genes of non-Accumulibacter phosphatis bacteria were also designed and applied to the EBPR sludge. Twenty-four phaC homologs retrieved from NPAO phaC primers were different from the phaC gene homologs derived from Accumulibacter phosphatis, which suggests that the PAO phaC primers were specific for the amplification of phaC gene homologs of Accumulibacter phosphatis, and the putative phaC gene homologs by PAO phaC primers were derived from Accumulibacter phosphatis in the EBPR sludge. Among 24 phaC homologs, a phaC homolog (GINPAO-2), which was dominant in the NPAO phaC clone library, showed the strongest signal in slot hybridization and shared approximately 60% nucleotide identity with the $G_{4PAO}$ group of Accumulibacter phosphatis, which suggests that GINPAO-2 might be derived from Accumulibacter phosphatis. In conclusion, analyses of the 16S rRNA and phaC genes showed that Accumulibacter phosphatis might be phylogenetically and metabolically diverse.

Improved Genomic DNA Isolation from Soil (토양으로부터 genomic DNA의 효과적인 분리)

  • Kang Ju-Hyung;Kim Bo-Hye;Lee Sun-Yi;Kim Yeong-Jin;Lee Ju-Won;Park Young Min;Ahn Soon-Cheol
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.851-856
    • /
    • 2005
  • Although valuable microbes have been isolated from the soil for the various productions of useful components, the microbes which can be cultivated in the laboratory are only $0.1-1\%$ of all microbes. To solve this problem, the study has recently been tried for making the valuable components from the environment by directly separating unculturable micrbial DNA in the soil. But it is known that humic acid originated from the soil interrupts various restriction enzymes and molecular biological process. Thus, in order to prevent these problems, this study modified the method separated soil DNA with phenol, CTAB and PEG. In order to compare the degree of purity for each DNA and the molecular biological application process, $A_{260}/A_{280}$ ratio, restriction enzymes, and PCR were performed. In case of DNA by the modified method, total yield of DNA was lower but $A_{260}/A_{280}$ ratio was higher than the previously reported methods. It was confirmed that the degree of purity is improved by the modified method. But it was not cut off by all kinds of tested restriction enzymes because of the operation of a very small amount of interrupting substances. When PCR was operated with each diluted DNA in different concentrations and GAPDH primer, the DNA by the modified method could be processed for PCR in the concentration of 100 times higher than by the previously reported separation method. Therefore, this experiment can find out the possibility of utilization for the unknown substances by effectively removing the harmful materials including humic acid and help establishing metagenomic DNA library from the soil DNA having the high degree of purity.

Gut microbiota profiling in aged dogs after feeding pet food contained Hericium erinaceus

  • Hyun-Woo, Cho;Soyoung, Choi;Kangmin, Seo;Ki Hyun, Kim;Jung-Hwan, Jeon;Chan Ho, Kim;Sejin, Lim;Sohee, Jeong;Ju Lan, Chun
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.937-949
    • /
    • 2022
  • Health concern of dogs is the most important issue for pet owners. People who have companied the dogs long-term provide the utmost cares for their well-being and healthy life. Recently, it was revealed that the population and types of gut microbiota affect the metabolism and immunity of the host. However, there is little information on the gut microbiome of dogs. Hericium erinaceus (H. erinaceus; HE) is one of the well-known medicinal mushrooms and has multiple bioactive components including polyphenol, β-glucan, polysaccharides, ergothioneine, hericerin, erinacines, etc. Here we tested a pet food that contained H. erinaceus for improvement in the gut microbiota environment of aged dogs. A total of 18 dogs, each 11 years old, were utilized. For sixteen weeks, the dogs were fed with 0.4 g of H. erinaceus (HE-L), or 0.8 g (HE-H), or without H. erinaceus (CON) per body weight (kg) with daily diets (n = 6 per group). Taxonomic analysis was performed using metagenomics to investigate the difference in the gut microbiome. Resulting from principal coordinates analysis (PCoA) to confirm the distance difference between the groups, there was a significant difference between HE-H and CON due to weighted Unique fraction metric (Unifrac) distance (p = 0.047), but HE-L did not have a statistical difference compared to that of CON. Additionally, the result of Linear discriminate analysis of effect size (LEfSe) showed that phylum Bacteroidetes in HE-H and its order Bacteroidales increased, compared to that of CON, Additionally, phylum Firmicutes in HE-H, and its genera (Streptococcus, Tyzzerella) were reduced. Furthermore, at the family level, Campylobacteraceae and its genus Campylobacter in HE-H was decreased compared to that of CON. Summarily, our data demonstrated that the intake of H. erinaceus can regulate the gut microbial community in aged dogs, and an adequate supply of HE on pet diets would possibly improve immunity and anti-obesity on gut-microbiota in dogs.

Metagenomic analysis of viral genes integrated in whole genome sequencing data of Thai patients with Brugada syndrome

  • Suwalak Chitcharoen;Chureerat Phokaew;John Mauleekoonphairoj;Apichai Khongphatthanayothin;Boosamas Sutjaporn;Pharawee Wandee;Yong Poovorawan;Koonlawee Nademanee;Sunchai Payungporn
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.44.1-44.13
    • /
    • 2022
  • Brugada syndrome (BS) is an autosomal dominant inheritance cardiac arrhythmia disorder associated with sudden death in young adults. Thailand has the highest prevalence of BS worldwide, and over 60% of patients with BS still have unclear disease etiology. Here, we performed a new viral metagenome analysis pipeline called VIRIN and validated it with whole genome sequencing (WGS) data of HeLa cell lines and hepatocellular carcinoma. Then the VIRIN pipeline was applied to identify viral integration positions from unmapped WGS data of Thai males, including 100 BS patients (case) and 100 controls. Even though the sample preparation had no viral enrichment step, we can identify several virus genes from our analysis pipeline. The predominance of human endogenous retrovirus K (HERV-K) viruses was found in both cases and controls by blastn and blastx analysis. This study is the first report on the full-length HERV-K assembled genomes in the Thai population. Furthermore, the HERV-K integration breakpoint positions were validated and compared between the case and control datasets. Interestingly, Brugada cases contained HERV-K integration breakpoints at promoters five times more often than controls. Overall, the highlight of this study is the BS-specific HERV-K breakpoint positions that were found at the gene coding region "NBPF11" (n = 9), "NBPF12" (n = 8) and long non-coding RNA (lncRNA) "PCAT14" (n = 4) region. The genes and the lncRNA have been reported to be associated with congenital heart and arterial diseases. These findings provide another aspect of the BS etiology associated with viral genome integrations within the human genome.

Microbial Community of the Arctic Soil from the Glacier Foreland of Midtre Lovénbreen in Svalbard by Metagenome Analysis (북극 스발바르 군도 중앙로벤 빙하 해안 지역의 토양 시료 내 메타지놈 기반 미생물 군집분석)

  • Seok, Yoon Ji;Song, Eun-Ji;Cha, In-Tae;Lee, Hyunjin;Roh, Seong Woon;Jung, Ji Young;Lee, Yoo Kyung;Nam, Young-Do;Seo, Myung-Ji
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.171-179
    • /
    • 2016
  • Recent succession of soil microorganisms and vegetation has occurred in the glacier foreland, because of glacier thawing. In this study, whole microbial communities, including bacteria, archaea, and eukaryotes, from the glacier foreland of Midtre Lovénbreen in Svalbard were analyzed by metagenome sequencing, using the Ion Torrent Personal Genome Machine (PGM) platform. Soil samples were collected from two research sites (ML4 and ML7), with different exposure times, from the ice. A total of 2,798,108 and 1,691,859 reads were utilized for microbial community analysis based on the metagenomic sequences of ML4 and ML7, respectively. The relative abundance of microbial communities at the domain level showed a high proportion of bacteria (about 86−87%), whereas archaeal and eukaryotic communities were poorly represented by less than 1%. The remaining 12% of the sequences were found to be unclassified. Predominant bacterial groups included Proteobacteria (40.3% from ML4 and 43.3% from ML7) and Actinobacteria (22.9% and 24.9%). Major groups of Archaea included Euryarchaeota (84.4% and 81.1%), followed by Crenarchaeota (10.6% and 13.1%). In the case of eukaryotes, both ML4 and ML7 samples showed Ascomycota (33.8% and 45.0%) as the major group. These findings suggest that metagenome analysis using the Ion Torrent PGM platform could be suitably applied to analyze whole microbial community structures, providing a basis for assessing the relative importance of predominant groups of bacterial, archaeal, and eukaryotic microbial communities in the Arctic glacier foreland of Midtre Lovénbreen, with high resolution.

Microbial Population Diversity of the Mud Flat in Suncheon Bay Based on 16S rDNA Sequences and Extracellular Enzyme Activities (남해안 갯벌 미생물의 세포외효소 활성 및 16S rDNA 분석에 의한 다양성 조사)

  • Kim, Yu-Jeong;Kim, Sung-Kyum;Kwon, Eun-Ju;Baik, Keun-Sik;Kim, Jung-Ho;Kim, Hoon
    • Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.268-275
    • /
    • 2007
  • Diversity of the mud flat microbial population in Suncheon Bay was investigated by studying extracellular enzyme activities and 16S rDNA sequences. Four culturable bacterial strains with CMCase, xylanase and protease activities were isolated from the wetland and the mud flat. All the strains produced more xylanase activity than CMCase or protease activity, and the properties of the isolate enzymes from the wetland were similar to those from the mud flat. About 2,000 clones were obtained with the 16S rDNA amplified from the metagenomic DNA isolated from the mud samples. Based on the restriction pattern(s), seventeen clones were selected for base sequence analysis. Of the 17 clones, only 35% (6 clones) were found to be cultured strains and 65% (11 clones) to be uncultured strains. The similarities in the base sequences of the clones ranged from 91.0% to 99.9% with an average similarity of 97.3%. The clones could be divided into 7 groups, Proteobacteria (9 clones, 52.9%), Firmicutes (3 clones, 17.6%), Bacteroidetes (1 clone), Flavobacteria (1 clone), Verrucomicrobia (1 clone), Acidobacteria (1 clone), and Chloroflexi (1 clone). Most of the Proteobacteria clones were gamma Proteobacteria associated with oxidation-reduction of sulfur.

Biochemical Characterization of a Novel Thermostable Esterase from the Metagenome of Dokdo Islets Marine Sediment (독도 심해토 메타게놈 유래 신규 내열성 에스테라아제의 생화학적 특성규명)

  • Lee, Chang-Muk;Seo, Sohyeon;Kim, Su-Yeon;Song, Jaeeun;Sim, Joon-Soo;Hahn, Bum-Soo;Kim, Dong-Hern;Yoon, Sang-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • A functional screen of 60,672 fosmid metagenomic clones amplified from marine sediment obtained from the Dokdo islets in Korea identified the gene EstES1, whose product, EstES1, displayed lipolytic properties on tributyrin-supplemented media. EstES1 is a 576 amino acid protein with a predicted molecular weight of 59.4 kDa including 37 N-terminal leader amino acids. EstES1 exhibited the highest sequence similarity (44%) to a carboxylesterase found in Haliangium ochraceum DSM14365. Phylogenetic analysis indicated that EstES1 belongs to a currently uncharacterized family of lipases. Within the conserved domain, EstES1 retains the catalytic triad that consists of the consensus penta-peptide motif, GESAG. EstES1 demonstrated a broad substrate specificity toward the long acyl group of ethyl esters (C2-C12), and its optimal activity was recorded toward p-Nitrophenyl butyrate (C4) at pH 9.0 and $40^{\circ}C$ (specific activity of 255.4 U/mg). The enzyme remained stable in the ranges of $60-65^{\circ}C$ and pH 9.0-10.5 and in the presence of methanol, ethanol, isopropanol, and dimethyl sulfoxide. Therefore, EstES1 has potential for use in industrial applications involving high temperature, organic solvents, and/or alkaline conditions.

Comparative Analysis of Gut Microbiota among Broiler Chickens, Pigs, and Cattle through Next-generation Sequencing (차세대염기서열 분석을 이용한 소, 돼지, 닭의 장내 미생물 군집 분석 및 비교)

  • Jeong, Ho Jin;Ha, Gwangsu;Shin, Su-Jin;Jeong, Su-Ji;Ryu, Myeong Seon;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1079-1087
    • /
    • 2021
  • To analyze gut microbiota of livestock in Korea and compare taxonomic differences, we conducted 16S rRNA metagenomic analysis through next-generation sequencing. Fecal samples from broiler chickens, pigs, and cattle were collected from domestic feedlots randomly. α-diversity results showed that significant differences in estimated species richness estimates (Chao1 and ACE, Abundance-based coverage estimators) and species richness index (OUTs, Operational taxonomic units) were identified among the three groups. However, NPShannon, Shannon, and Simpson indices revealed that abundance and evenness of the species were statistically significant only for poultry (broiler chickens) and mammals (pigs and cattle). Firmicutes was the most predominant phylum in the three groups of fecal samples. Linear discriminant (LDA) effect size (LEfSe) analysis was conducted to reveal the ranking order of abundant taxa in each of the fecal samples. A size-effect over 2.0 on the logarithmic LDA score was used as a discriminative functional biomarker. As shown by the fecal analysis at the genus level, broiler chickens were characterized by the presence of Weissella and Lactobacillus, as well as pigs were characterized by the presence of provetella and cattele were characterized by the presence of Acinetobacter. A permutational multivariate analysis of variance (PERMANOVA) showed that differences of microbial clusters among three groups were significant at the confidence level. (p=0.001). This study provides basic data that could be useful in future research on microorganisms associated with performance growth, as well as in studies on the livestock gut microbiome to increase productivity in the domestic livestock industry.