Browse > Article
http://dx.doi.org/10.5808/gi.22047

Metagenomic analysis of viral genes integrated in whole genome sequencing data of Thai patients with Brugada syndrome  

Suwalak Chitcharoen (Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University)
Chureerat Phokaew (Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University)
John Mauleekoonphairoj (Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University)
Apichai Khongphatthanayothin (Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University)
Boosamas Sutjaporn (Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society)
Pharawee Wandee (Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University)
Yong Poovorawan (Department of Pediatrics, Faculty of Medicine, Chulalongkorn University)
Koonlawee Nademanee (Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University)
Sunchai Payungporn (Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University)
Abstract
Brugada syndrome (BS) is an autosomal dominant inheritance cardiac arrhythmia disorder associated with sudden death in young adults. Thailand has the highest prevalence of BS worldwide, and over 60% of patients with BS still have unclear disease etiology. Here, we performed a new viral metagenome analysis pipeline called VIRIN and validated it with whole genome sequencing (WGS) data of HeLa cell lines and hepatocellular carcinoma. Then the VIRIN pipeline was applied to identify viral integration positions from unmapped WGS data of Thai males, including 100 BS patients (case) and 100 controls. Even though the sample preparation had no viral enrichment step, we can identify several virus genes from our analysis pipeline. The predominance of human endogenous retrovirus K (HERV-K) viruses was found in both cases and controls by blastn and blastx analysis. This study is the first report on the full-length HERV-K assembled genomes in the Thai population. Furthermore, the HERV-K integration breakpoint positions were validated and compared between the case and control datasets. Interestingly, Brugada cases contained HERV-K integration breakpoints at promoters five times more often than controls. Overall, the highlight of this study is the BS-specific HERV-K breakpoint positions that were found at the gene coding region "NBPF11" (n = 9), "NBPF12" (n = 8) and long non-coding RNA (lncRNA) "PCAT14" (n = 4) region. The genes and the lncRNA have been reported to be associated with congenital heart and arterial diseases. These findings provide another aspect of the BS etiology associated with viral genome integrations within the human genome.
Keywords
Brugada syndrome; human endogenous retrovirus K; metagenome; VIRIN; virus integration breakpoint; whole genome sequencing;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Telenti A, Pierce LC, Biggs WH, di Iulio J, Wong EH, Fabani MM, et al. Deep sequencing of 10,000 human genomes. Proc Natl Acad Sci U S A 2016;113:11901-11906.   DOI
2 Handley SA. The virome: a missing component of biological interaction networks in health and disease. Genome Med 2016;8:32.
3 Moustafa A, Xie C, Kirkness E, Biggs W, Wong E, Turpaz Y, et al. The blood DNA virome in 8,000 humans. PLoS Pathog 2017; 13:e1006292.
4 Grandi N, Tramontano E. Human endogenous retroviruses are ancient acquired elements still shaping innate immune responses. Front Immunol 2018;9:2039.
5 Xue B, Sechi LA, Kelvin DJ. Human endogenous retrovirus K (HML-2) in health and disease. Front Microbiol 2020;11:1690.
6 Kremer D, Gruchot J, Weyers V, Oldemeier L, Gottle P, Healy L, et al. pHERV-W envelope protein fuels microglial cell-dependent damage of myelinated axons in multiple sclerosis. Proc Natl Acad Sci U S A 2019;116:15216-15225.   DOI
7 Levet S, Charvet B, Bertin A, Deschaumes A, Perron H, Hober D. Human endogenous retroviruses and type 1 diabetes. Curr Diab Rep 2019;19:141.
8 Song Y, Choi JE, Kwon YJ, Chang HJ, Kim JO, Park DH, et al. Identification of susceptibility loci for cardiovascular disease in adults with hypertension, diabetes, and dyslipidemia. J Transl Med 2021;19:85.
9 Ariza ME, Williams MV. A human endogenous retrovirus K dUTPase triggers a TH1, TH17 cytokine response: does it have a role in psoriasis? J Invest Dermatol 2011;131:2419-2427.   DOI
10 Reynier F, Verjat T, Turrel F, Imbert PE, Marotte H, Mougin B, et al. Increase in human endogenous retrovirus HERV-K (HML-2) viral load in active rheumatoid arthritis. Scand J Immunol 2009;70:295-299.
11 Gao Y, Yu XF, Chen T. Human endogenous retroviruses in cancer: expression, regulation and function. Oncol Lett 2021;21:121.
12 Fernandez AF, Esteller M. Viral epigenomes in human tumorigenesis. Oncogene 2010;29:1405-1420.   DOI
13 Farrell PJ. Epstein-Barr virus and cancer. Annu Rev Pathol 2019;14:29-53.
14 Stephens Z, O'Brien D, Dehankar M, Roberts LR, Iyer RK, Kocher JP. Exogene: a performant workflow for detecting viral integrations from paired-end next-generation sequencing data. PLoS One 2021;16:e0250915.
15 Zack F, Klingel K, Kandolf R, Wegener R. Sudden cardiac death in a 5-year-old girl associated with parvovirus B19 infection. Forensic Sci Int 2005;155:13-17.   DOI
16 Juhasz Z, Tiszlavicz L, Kele B, Terhes G, Deak J, Rudas L, et al. Sudden cardiac death from parvovirus B19 myocarditis in a young man with Brugada syndrome. J Forensic Leg Med 2014; 25:8-13.   DOI
17 Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19: 455-477.   DOI
18 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114-2120.   DOI
19 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25:2078-2079.   DOI
20 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357-359.   DOI
21 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics 2009;10:421.
22 Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015;12:59-60.   DOI
23 Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26:841-842.   DOI
24 Frankish A, Diekhans M, Jungreis I, Lagarde J, Loveland JE, Mudge JM, et al. Gencode 2021. Nucleic Acids Res 2021;49:D916-D923.   DOI
25 Jurka J. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet 2000;16:418-420.   DOI
26 Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature 2012;489:57-74.   DOI
27 Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In: Research in Computational Molecular Biology. RECOMB 2013. Lecture Notes in Computed Science, Vol. 7821 (Deng M, Jiang R, Sun F, Zhang X, eds.). Berlin: Springer, 2013. pp. 158-170.
28 Hudnall SD, Chen T, Allison P, Tyring SK, Heath A. Herpesvirus prevalence and viral load in healthy blood donors by quantitative real-time polymerase chain reaction. Transfusion 2008;48:1180-1187.   DOI
29 Lee M, Hills M, Conomos D, Stutz MD, Dagg RA, Lau LM, et al. Telomere extension by telomerase and ALT generates variant repeats by mechanistically distinct processes. Nucleic Acids Res 2014;42:1733-1746.   DOI
30 Sung WK, Zheng H, Li S, Chen R, Liu X, Li Y, et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet 2012;44:765-769.   DOI
31 Zapatka M, Borozan I, Brewer DS, Iskar M, Grundhoff A, Alawi M, et al. The landscape of viral associations in human cancers. Nat Genet 2020;52:320-330.   DOI
32 Jurasz H, Pawlowski T, Perlejewski K. Contamination issue in viral metagenomics: problems, solutions, and clinical perspectives. Front Microbiol 2021;12:745076.
33 Xie Y, Xue Q, Jiao W, Wu J, Yu Y, Zhao L, et al. Associations between sputum torque teno virus load and lung function and disease severity in patients with chronic obstructive pulmonary disease. Front Med (Lausanne) 2021;8:618757.
34 Spandole S, Cimponeriu D, Berca LM, Mihaescu G. Human anelloviruses: an update of molecular, epidemiological and clinical aspects. Arch Virol 2015;160:893-908.   DOI
35 Desingu PA, Nagarajan K, Dhama K. Can a torque teno virus (TTV) be a naked DNA particle without a virion structure? Fron Virol 2022;2:821298.
36 Sawata T, Bando M, Nakayama M, Mato N, Yamasawa H, Takahashi M, et al. Clinical significance of changes in Torque teno virus DNA titer after chemotherapy in patients with primary lung cancer. Respir Investig 2018;56:173-178.   DOI
37 Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck B, Stremlau A, et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 1985;314:111-114.   DOI
38 Matsubara H, Michitaka K, Horiike N, Yano M, Akbar SM, Torisu M, et al. Existence of TT virus DNA in extracellular body fluids from normal healthy Japanese subjects. Intervirology 2000;43:16-19.   DOI
39 Ninomiya M, Takahashi M, Shimosegawa T, Okamoto H. Analysis of the entire genomes of fifteen torque teno midi virus variants classifiable into a third group of genus Anellovirus. Arch Virol 2007;152:1961-1975.
40 Thiene G. Sudden cardiac death in the young: a genetic destiny? Clin Med (Lond) 2018;18:s17-s23.   DOI
41 Chen X, Li D. Sequencing facility and DNA source associated patterns of virus-mappable reads in whole-genome sequencing data. Genomics 2021;113:1189-1198.   DOI
42 Cantalupo PG, Katz JP, Pipas JM. HeLa nucleic acid contamination in the cancer genome atlas leads to the misidentification of human papillomavirus 18. J Virol 2015;89:4051-4057.   DOI
43 Harputluoglu M, Carr BI. Hepatitis B before and after hepatocellular carcinoma. J Gastrointest Cancer 2021;52:1206-1210.   DOI
44 Chen X, Kost J, Sulovari A, Wong N, Liang WS, Cao J, et al. A virome-wide clonal integration analysis platform for discovering cancer viral etiology. Genome Res 2019;29:819-830.   DOI
45 Wallace AD, Wendt GA, Barcellos LF, de Smith AJ, Walsh KM, Metayer C, et al. To ERV is human: a phenotype-wide scan linking polymorphic human endogenous retrovirus-K insertions to complex phenotypes. Front Genet 2018;9:298.
46 Jacques PE, Jeyakani J, Bourque G. The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet 2013;9:e1003504.
47 Nielsen MW, Holst AG, Olesen SP, Olesen MS. The genetic component of Brugada syndrome. Front Physiol 2013;4:179.
48 Garazha A, Ivanova A, Suntsova M, Malakhova G, Roumiantsev S, Zhavoronkov A, et al. New bioinformatic tool for quick identification of functionally relevant endogenous retroviral inserts in human genome. Cell Cycle 2015;14:1476-1484.   DOI
49 Suntsova M, Garazha A, Ivanova A, Kaminsky D, Zhavoronkov A, Buzdin A. Molecular functions of human endogenous retroviruses in health and disease. Cell Mol Life Sci 2015;72:3653-3675.   DOI
50 Benito B, Sarkozy A, Mont L, Henkens S, Berruezo A, Tamborero D, et al. Gender differences in clinical manifestations of Brugada syndrome. J Am Coll Cardiol 2008;52:1567-1573.   DOI
51 Ohno S, Zankov DP, Ding WG, Itoh H, Makiyama T, Doi T, et al. KCNE5 (KCNE1L) variants are novel modulators of Brugada syndrome and idiopathic ventricular fibrillation. Circ Arrhythm Electrophysiol 2011;4:352-361.
52 Benito B, Berruezo A. Brugada syndrome and pregnancy: delving into the role of sex hormones in ion channelopathies. Rev Esp Cardiol (Engl Ed) 2014;67:165-167.   DOI
53 Yang G, Liu J, Wang Y, Du Y, Ma A, Wang T. Lack of influence of sex hormones on Brugada syndrome-associated mutant Nav1.5 sodium channel. J Electrocardiol 2019;52:82-87.   DOI
54 Katoh I, Kurata S. Association of endogenous retroviruses and long terminal repeats with human disorders. Front Oncol 2013;3:234.
55 Krasovec T, Sikonja J, Zerjav Tansek M, Debeljak M, Ilovar S, Trebusak Podkrajsek K, et al. Long-term follow-up of three family members with a novel NNT pathogenic variant causing primary adrenal insufficiency. Genes (Basel) 2022;13:717.
56 Zhu L, Su X. Case report: neuroblastoma breakpoint family genes associate with 1q21 copy number variation disorders. Front Genet 2021;12:728816.
57 Williams JL, Hall CL, Meimaridou E, Metherell LA. Loss of Nnt increases expression of oxidative phosphorylation complexes in C57BL/6J hearts. Int J Mol Sci 2021;22:6101.
58 Oakley RH, Cidlowski JA. Glucocorticoid signaling in the heart: a cardiomyocyte perspective. J Steroid Biochem Mol Biol 2015;153:27-34.   DOI
59 Nickel AG, von Hardenberg A, Hohl M, Loffler JR, Kohlhaas M, Becker J, et al. Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab 2015;22:472-484.   DOI
60 Vandepoele K, Andries V, Van Roy N, Staes K, Vandesompele J, Laureys G, et al. A constitutional translocation t(1;17) (p36.2;q11.2) in a neuroblastoma patient disrupts the human NBPF1 and ACCN1 genes. PLoS One 2008;3:e2207.
61 Andries V, Vandepoele K, Van Roy F. The NBPF gene family. In: Neuroblastoma: Present and Future (Shimada H, ed.). Rijeka: InTech, 2012. pp. 185-214.
62 Kumarswamy R, Bauters C, Volkmann I, Maury F, Fetisch J, Holzmann A, et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 2014;114:1569-1575.
63 Liao J, He Q, Li M, Chen Y, Liu Y, Wang J. LncRNA MIAT: myocardial infarction associated and more. Gene 2016;578:158-161.   DOI
64 Zhu L, Li N, Sun L, Zheng D, Shao G. Non-coding RNAs: the key detectors and regulators in cardiovascular disease. Genomics 2021;113:1233-1246.   DOI
65 Wang Y, Hu Y, Wu G, Yang Y, Tang Y, Zhang W, et al. Long noncoding RNA PCAT-14 induces proliferation and invasion by hepatocellular carcinoma cells by inducing methylation of miR-372. Oncotarget 2017;8:34429-34441.   DOI
66 Sendfeld F, Selga E, Scornik FS, Perez GJ, Mills NL, Brugada R. Experimental models of Brugada syndrome. Int J Mol Sci 2019;20:2123.
67 Ge S, Mi Y, Zhao X, Hu Q, Guo Y, Zhong F, et al. Characterization and validation of long noncoding RNAs as new candidates in prostate cancer. Cancer Cell Int 2020;20:531.
68 Kullo IJ, Shameer K, Jouni H, Lesnick TG, Pathak J, Chute CG, et al. The ATXN2-SH2B3 locus is associated with peripheral arterial disease: an electronic medical record-based genome-wide association study. Front Genet 2014;5:166.
69 Shukla S, Zhang X, Niknafs YS, Xiao L, Mehra R, Cieslik M, et al. Identification and validation of PCAT14 as prognostic biomarker in prostate cancer. Neoplasia 2016;18:489-499.   DOI
70 Makarawate P, Glinge C, Khongphatthanayothin A, Walsh R, Mauleekoonphairoj J, Amnueypol M, et al. Common and rare susceptibility genetic variants predisposing to Brugada syndrome in Thailand. Heart Rhythm 2020;17:2145-2153.   DOI
71 Makarawate P, Chaosuwannakit N, Ruamcharoen Y, Panthongviriyakul A, Pongchaiyakul C, Tharaksa P, et al. Prevalence and associated factors of early repolarization pattern in healthy young northeastern Thai men: a correlation study with Brugada electrocardiography. J Arrhythm 2015;31:215-220.   DOI
72 Vutthikraivit W, Rattanawong P, Putthapiban P, Sukhumthammarat W, Vathesatogkit P, Ngarmukos T, et al. Worldwide prevalence of Brugada syndrome: a systematic review and meta-analysis. Acta Cardiol Sin 2018;34:267-277.
73 Barc J, Tadros R, Glinge C, Chiang DY, Jouni M, Simonet F, et al. Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nat Genet 2022;54:232-239.   DOI
74 Le Scouarnec S, Karakachoff M, Gourraud JB, Lindenbaum P, Bonnaud S, Portero V, et al. Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome. Hum Mol Genet 2015;24:2757-2763.   DOI
75 Wilde AA, Behr ER. Genetic testing for inherited cardiac disease. Nat Rev Cardiol 2013;10:571-583.   DOI
76 Lee SB, Wheeler MM, Thummel KE, Nickerson DA. Calling star alleles with Stargazer in 28 pharmacogenes with whole genome sequences. Clin Pharmacol Ther 2019;106:1328-1337.   DOI
77 Mauleekoonphairoj J, Chamnanphon M, Khongphatthanayothin A, Sutjaporn B, Wandee P, Poovorawan Y, et al. Phenotype prediction and characterization of 25 pharmacogenes in Thais from whole genome sequencing for clinical implementation. Sci Rep 2020;10:18969.