Fine-Scale Population Structure of Accumulibacter phosphatis in Enhanced Biological Phosphorus Removal Sludge

  • Wang, Qian (Division of Applied Life Science, EB-NCRC, PMBBRC, Gyeongsang National University) ;
  • Shao, Yongqi (Division of Applied Life Science, EB-NCRC, PMBBRC, Gyeongsang National University) ;
  • Huong, Vu Thi Thu (Division of Applied Life Science, EB-NCRC, PMBBRC, Gyeongsang National University) ;
  • Park, Woo-Jun (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Park, Jong-Moon (Advanced Environmental Biotechnology Research Center, School of Environmental Science and Engineering) ;
  • Jeon, Che-Ok (Department of Life Science, Chung-Ang University)
  • Published : 2008.07.31

Abstract

To investigate the diversities of Accumulibacter phosphatis and its polyhydroxyalkanoate (PHA) synthase gene (phaC) in enhanced biological phosphorus removal (EBPR) sludge, an acetate-fed sequencing batch reactor was operated. Analysis of microbial communities using fluorescence in situ hybridization and 16S rRNA gene clone libraries showed that the population of Accumulibacter phosphatis in the EBPR sludge comprised more than 50% of total bacteria, and was clearly divided into two subgroups with about 97.5% sequence identity of the 16S rRNA genes. PAO phaC primers targeting the phaC genes of Accumulibacter phosphatis were designed and applied to retrieve fragments of putative phaC homologs of Accumulibacter phosphatis from EBPR sludge. PAO phaC primers targeting $G_{1PAO},\;G_{2PAO},\;and\;G_{3PAO}$ groups produced PCR amplicons successfully; the resulting sequences of the phaC gene homologs were diverse, and were distantly related to metagenomic phaC sequences of Accumulibacter phosphatis with 75-98% DNA sequence identities. Degenerate NPAO (non-PAO) phaC primers targeting phaC genes of non-Accumulibacter phosphatis bacteria were also designed and applied to the EBPR sludge. Twenty-four phaC homologs retrieved from NPAO phaC primers were different from the phaC gene homologs derived from Accumulibacter phosphatis, which suggests that the PAO phaC primers were specific for the amplification of phaC gene homologs of Accumulibacter phosphatis, and the putative phaC gene homologs by PAO phaC primers were derived from Accumulibacter phosphatis in the EBPR sludge. Among 24 phaC homologs, a phaC homolog (GINPAO-2), which was dominant in the NPAO phaC clone library, showed the strongest signal in slot hybridization and shared approximately 60% nucleotide identity with the $G_{4PAO}$ group of Accumulibacter phosphatis, which suggests that GINPAO-2 might be derived from Accumulibacter phosphatis. In conclusion, analyses of the 16S rRNA and phaC genes showed that Accumulibacter phosphatis might be phylogenetically and metabolically diverse.

Keywords

References

  1. Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169
  2. Bond, P. L., P. Hugenholtz, J. Keller, and L. L. Blackall. 1995. Bacterial community structures of phosphate-removing and nonphosphate- removing activated sludges from sequencing batch reactors. Appl. Environ. Microbiol. 61: 1910-1916
  3. Carvalho, G., P. C. Lemos, A. Oehmen, and M. A. Reis. 2007. Denitrifying phosphorus removal: Linking the process performance with the microbial community structure. Water Res. 41: 4383-4396 https://doi.org/10.1016/j.watres.2007.06.065
  4. Cech, J. S., P. Hartman, and J. Wanner. 1993. Competition between polyp and non-polyP bacteria in an enhanced phosphate removal system. Water Environ. Res. 65: 690-692 https://doi.org/10.2175/WER.65.5.13
  5. Comeau, Y., K. J. Hall, R. E. W. Hancock, and W. K. Oldham. 1986. Biochemical model for enhanced biological phosphorus removal. Water Res. 20: 1511-1521 https://doi.org/10.1016/0043-1354(86)90115-6
  6. Crocetti, G. R., P. Hugenholtz, P. L. Bond, A. Schuler, J. Keller, D. Jenkins, and L. L. Blackall. 2000. Identification of polyphosphate-accumulating organisms and design of 16S rRNA directed probes for their detection and quantitation. Appl. Environ. Microbiol. 66: 1175-1182 https://doi.org/10.1128/AEM.66.3.1175-1182.2000
  7. Daims, H., A. Bruhl, R. Amann, K.-H. Schleifer, and M. Wagner. 1999. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: Development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22: 434-444 https://doi.org/10.1016/S0723-2020(99)80053-8
  8. Felsenstein, J. 2002. PHYLIP (phylogeny inference package), version 3.6a. Department of Genetics, University of Washington, Seattle, WA, U.S.A
  9. Garcia Mart n, H., N. Ivanoval, V. Kunin, F. Warnecke, K. W. Barry, A. C. McHardy, et al. 2006. Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat. Biotechnol. 24: 1263-1269 https://doi.org/10.1038/nbt1247
  10. He, S., D. L. Gall, and K. D. McMahon. 2007. Accumulibacter population structure in enhanced biological phosphorus removal sludges revealed by polyphosphate kinase genes. Appl. Environ. Microbiol. 73: 5865-5874 https://doi.org/10.1128/AEM.01207-07
  11. Hesselmann, R. P., C. Werlen, D. Hahn, J. R. van der Meer, and A. J. Zehnder. 1999. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst. Appl. Microbiol. 22: 454-465 https://doi.org/10.1016/S0723-2020(99)80055-1
  12. Huber, T., G. Faulkner, and P. Hugenholtz. 2004. Bellerophon; a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317-2319 https://doi.org/10.1093/bioinformatics/bth226
  13. Hugenholtz, P., G. W. Tyson, and L. L. Blackall. 2002. Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization. Methods Mol. Biol. 179: 29-42
  14. Jeon, C. O. and J. M. Park. 2000. Enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose as a sole carbon source. Water Res. 34: 2160-2170 https://doi.org/10.1016/S0043-1354(99)00383-8
  15. Jeon, C. O., D. S. Lee, M. W. Lee, and J. M. Park. 2001. Enhanced biological phosphorus removal in an anaerobic-aerobic sequencing batch reactor: Effect of pH. Water Environ. Res. 73: 301-306 https://doi.org/10.2175/106143001X139407
  16. Jeon, C. O., D. S. Lee, and J. M. Park. 2001. Enhanced biological phosphorus removal in an anaerobic/aerobic sequencing batch reactor: Characteristics of carbon metabolism. Water Environ. Res. 73: 301-306 https://doi.org/10.2175/106143001X139407
  17. Jeon, C. O., D. S. Lee, and J. M. Park. 2003. Microbial communities in activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor. Water Res. 37: 2195-2205 https://doi.org/10.1016/S0043-1354(02)00587-0
  18. Jeon, C. O., W. Park, P. Padmanabhan, C. DeRito, J. R. Snape, and E. L. Madsen. 2003. Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc. Natl. Acad. Sci. USA 100: 13591-13596
  19. Jeon, C. O., S. H. Woo, and J. M. Park. 2003. Microbial communities of activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose. J. Microbiol. Biotechnol. 13: 385-393
  20. Kong, Y., J. L. Nielsen, and P. H. Nielsen. 2004. Microautoradiographic study of Rhodocyclus-related polyphosphateaccumulating bacteria in full-scale enhanced biological phosphorus removal plants. Appl. Environ. Microbiol. 70: 5383-5390 https://doi.org/10.1128/AEM.70.9.5383-5390.2004
  21. Kang, C. H., Y. D. Nam, W. H. Chung, Z. X. Quan, Y. H. Park, S. J. Park, R. Desmone, X. F. Wan, and S. K. Rhee. 2007. Relationship between genome similarity and DNA-DNA hybridization among closely related bacteria. J. Microbiol. Biotechnol. 17: 945-951
  22. Kortstee, G. J. J., K. J. Appeldoorn, C. F. C. Bonting, W. J. van Niel, and H. J. van Veen. 2000. Ecological aspects of biological phosphorus removal in activated sludge systems. Adv. Microb. Ecol. 16: 169-199
  23. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-147. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, New York
  24. Lee, J. W., E. S. Choi, K. I. Gil, H. W. Lee, S. H. Lee, S. Y. Lee, and Y. K. Park. 2001. Removal behavior of biological nitrogen and phosphorus and prediction of microbial community composition with its function in an anaerobic-anoxic system from weak sewage. J. Microbiol. Biotechnol. 11: 994-1001
  25. Lee, N., P. H. Nielsen, H. Aspegren, M. Henze, K. H. Schleifer, and J. la Cour Jansen. 2003. Long-term population dynamics and in situ physiology in activated sludge systems with enhanced biological phosphorus removal operated with and without nitrogen removal. Syst. Appl. Microbiol. 26: 211-227 https://doi.org/10.1078/072320203322346065
  26. Linhart, C. and R. Shamir. 2005. The degenerate primer design problem: Theory and applications. J. Comput. Biol. 12: 431-456 https://doi.org/10.1089/cmb.2005.12.431
  27. Liu, W. T., T. Mino, K. Nakamura, and T. Matsuo. 1996. Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge with biological phosphorus removal. Water Res. 30: 75-82 https://doi.org/10.1016/0043-1354(95)00121-Z
  28. Lu, S., M. Park, H. S. Ro, D. S. Lee, W. Park, and C. O. Jeon. 2006. Analysis of microbial communities using culturedependent and culture-independent approaches in an anaerobic/aerobic SBR reactor. J. Microbiol. 44: 155-161
  29. McMahon, K. D., M. A. Dojka, N. R. Pace, D. Jenkins, and J. D. Keasling. 2002. Polyphosphate kinase from activated sludge performing enhanced biological phosphorus removal. Appl. Environ. Microbiol. 68: 4971-4978 https://doi.org/10.1128/AEM.68.10.4971-4978.2002
  30. Michinaka, A., J. Arou, M. Onuki, H. Satoh, and T. Mino. 2007. Analysis of polyhydroxyalkanoate (PHA) synthase gene in activated sludge that produces PHA containing 3-hydroxy-2-methylvalerate. Biotechnol. Bioeng. 96: 871-880 https://doi.org/10.1002/bit.21085
  31. Mino, T., M. C. M. van Loosdrecht, and J. J. Heijnen. 1998. Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res. 32: 3193-3207 https://doi.org/10.1016/S0043-1354(98)00129-8
  32. Park, I. J., Y. H. Rhee, N. Y. Cho, and K. S. Shin. 2006. Cloning and analysis of medium-chain-length poly(3-hydroxyalkanoate) depolymerase gene of Pseudomonas luteola M13-4. J. Microbiol. Biotechnol. 16: 1935-1939
  33. Rho, J. K., M. H. Choi, J. H. Shim, S.-Y. Lee, M. J. Woo, B.-S. Ko, K.-W. Chi, and S. C. Yoon. 2007. Swinging effect of salicylic acid on the accumulation of polyhydroxyalkanoic acid (PHA) in Pseudomonas aeruginosa BM114 synthesizing both MCL- and SCL-PHA. J. Microbiol. Biotechnol. 17: 2018-2026
  34. Sambrook, J. and K. J. Janssen. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  35. Saunders, A. M., A. Oehmen, L. L. Blackall, Z. Yuan, and J. Keller. 2003. The effect of GAOs (glycogen accumulating organisms) on anaerobic carbon requirements in full-scale Australian EBPR (enhanced biological phosphorus removal) plants. Water Sci. Technol. 47: 37-43
  36. Seviour, R. J., T. Mino, and M. Onuki. 2003. The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol. Rev. 27: 99-127 https://doi.org/10.1016/S0168-6445(03)00021-4
  37. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  38. Thompson, J. R., L. A. Marcelino, and M. F. Polz. 2002. Heteroduplexes in mixed-template amplifications: Formation, consequence and elimination by 'reconditioning PCR'. Nucleic Acids Res. 30: 2083-2088 https://doi.org/10.1093/nar/30.9.2083
  39. Wentzel, M. C., L. H. Lötter, R. E. Loewenthal, and G. R. Marais. 1986. Metabolic behaviour of Acinetobacter spp. in enhanced biological phosphorus removal - a biochemical model. Water SA 12: 209-224
  40. Wong, M.-T., T. Mino, R. J. Seviour, M. Onuki, and W.-T. Liu. 2005. In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan. Water Res. 39: 2901-2914 https://doi.org/10.1016/j.watres.2005.05.015
  41. Zilles, J. L., J. Peccia, M.-W. Kim, C.-H. Hung, and D. R. Noguera. 2002. Involvement of Rhodocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants. Appl. Environ. Microbiol. 68: 2763-2769 https://doi.org/10.1128/AEM.68.6.2763-2769.2002