Browse > Article

Structural Characteristics of Expression Module of Unidentified Genes from Metagenome  

Park, Seung-Hye (Department of Biological Engineering, Inha University)
Jeong, Young-Su (Department of Biological Engineering, Inha University)
Kim, Won-Ho (Department of Biological Engineering, Inha University)
Kim, Geun-Joong (Department of Biological Sciences, Chonnam National University)
Hur, Byung-Ki (Department of Biological Engineering, Inha University)
Publication Information
KSBB Journal / v.21, no.2, 2006 , pp. 144-150 More about this Journal
Abstract
The exploitation of metagenome, the access to the natural extant of enormous potential resources, is the way for elucidating the functions of organism in environmental communities, for genomic analyses of uncultured microorganism, and also for the recovery of entirely novel natural products from microbial communities. The major breakthrough in metagenomics is opened by the construction of libraries with total DNAs directly isolated from environmental samples and screening of these libraries by activity and sequence-based approaches. Screening with activity-based approach is presumed as a plausible route for finding new catabolic genes under designed conditions without any prior sequence information. The main limitation of these approaches, however, is the very low positive hits in a single round of screening because transcription, translation and appropriate folding are not always possible in E. coli, a typical surrogate host. Thus, to obtain information about these obstacles, we studied the genetic organization of individual URF's(unidentified open reading frame from metagenome sequenced and deposited in GenBank), especially on the expression factors such as codon usage, promoter region and ribosome binding site(rbs), based on DNA sequence analyses using bioinformatics tools. And then we also investigated the above-mentioned properties for 4100 ORFs(Open Reading Frames) of E. coli K-12 generally used as a host cell for the screening of noble genes from metagenome. Finally, we analyzed the differences between the properties of URFs of metagenome and ORFs of E. coli. Information derived from these comparative metagenomic analyses can provide some specific features or environmental blueprint available to screen a novel biocatalyst efficiently.
Keywords
Metagenome; ORF; URF; expression factor; screening;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Whitman, W. B., D. C. Coleman, and W. J. Wiebe. (1998), Prokaryotes: The Unseen Majority, Proc Natl Acad Sci. 95, 6578-6583
2 Lorenz, P., K. Liebeton, F. Niehaus, and J. Eck (2002), Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space, Curr. Opin. Biotechnol. 13, 572-577   DOI   ScienceOn
3 Henne, A., R. A. Schmitz, M. Bomeke, G. Gottschalk, and R. Daniel (2000), Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli, Appl. Environ. Microbiol. 66, 3113-3116   DOI
4 Gupta, R., Q. K. Beg, and P. Lorenz (2002), Bacterial alkaline proteases: molecular approaches and industrial applications, Appl. Microbiol. Biotechnol. 59, 15-32   DOI   ScienceOn
5 Uchiyama, T., T. Abe, T. Ikemura, and K. Watanabe (2005), Substrateinduced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes, Nat. Biotechnol. 23, 88-93   DOI   ScienceOn
6 Gasteiger, E., C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins, R. D. Appel, and A. Bairoch (2005), Protein Identification and Analysis Tools on the ExPASy Server; pp. 571-607. In John M. Walker (ed.), The Proteomics Protocols Handbook. Humana Press, N. J., USA
7 EvolvingCode by Freeland Lab. Biological Sciences Department at UMBC http://www.evolvingcode.net/codon/cai/cai.php
8 Ikemura, T. (1981), Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system, J. Mol. Biol. 151, 389-409   DOI
9 Henne, A., R. Daniel, R. A. Schmitz, and G. Gottschalk (1999), Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate, Appl. Environ. Microbiol. 65, 3901-3907
10 Snyder, L. and W. Champness (2003), Molecular Genetics of Bacteria, 2nd ed. ASM press. Washington, D. C., USA
11 Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, D. Wu, I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A. H. Knap, M. W. Lomas, K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y. H. Rogers, and H. O. Smith (2004), Environmental genome shotgun sequencing of the Sargasso Sea, Science 304, 66-74   DOI   ScienceOn
12 Hallam, S. J., N. Putnam, C. M. Preston, J. C. Detter, D. Rokhsar, P. M. Richardson, and E. F. DeLong (2004), Reverse methanogenesis: testing the hypothesis with environmental genomics, Science 305, 1457-1462   DOI   ScienceOn
13 Amann, R. I., W. Ludwig, and K. H. Schleifer (1995), Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbial. Rev. 59, 143-169
14 Stothard, P. (2000), The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences, BioTechniques 28, 1102-1104
15 Martines, A., S. J. Kolvek, C. L. Yip, J. Hopke, K.A. Brown, I. A. MacNeil, and M. S. Osburne (2004), Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts, Appl. Environ. Microbiol. 70, 2452-2463   DOI
16 Walter, J., M. Mangold, and G. W. Tannock (2005), Construction, analysis, and beta-glucanase screening of a bacterial artificial chromosome library from the large-bowel microbiota of mice, Appl. Environ. Microbiol. 71, 2347-2354   DOI   ScienceOn
17 Voget, S., C. Leggewie, A. Uesbeck, C. Raasch, K. E. Jaeger, and W. R. Streit (2003), Prospecting for novel biocatalysts in a soil metagenome, Appl. Environ. Microbiol. 69, 6235-6242   DOI
18 Kube, M., A. Beck, A. Meyerdierks, R. Amann, R. Reinhardt, and R. Rabus (2005), A catabolic gene cluster for anaerobic benzoate degradation in methanotrophic microbial Black Sea mats, Syst. appl. Microbiol. 28, 287-294   DOI   ScienceOn
19 Galvao, T. C., W. W. Mohn, and V. D. Lorenzo (2005), Exploring the microbial biodegradation and biotransformation gene pool, Trends Biotechnol. 23,497-506   DOI   ScienceOn
20 Seow, K. T., G. Meurer, M. Gerlitz, E. Wendt-Pienkowski, C. R. Hutchinson, and J. Davies (1997), A study of iterative type II polyketide synthases, using bacterial genes cloned from soil DNA: a means to access and use genes from uncultured microorganisms, J. Bacteriol. 179, 7360-7368   DOI
21 Institute of Bioinformatics and Structural Biology, NTHU-PCLyu's Lab http://gpdb.life.nthu.edu.tw/GPDB/index.php
22 Crooks, G. E., G. Hon, J. M. Chandonia, and S. E. Brenner (2004), WebLogo: A sequence logo generator, Genome Research 14, 1188-1190   DOI   ScienceOn
23 Tyson, G. W., J. Chapman, P. Hugenholtz, E. E. Allen, R. J. Ram, P. M. Richardson, V. V. Solovyew, E. M. Rubin, D. S. Rokhsar, and J. F. Banfield (2004), Community structure and metabolism through reconstruction of microbial genomes from the environment, Nature 428, 37-43   DOI   ScienceOn
24 Gouy, M. and C. Gautier (1982), Codon usage in bacteria: correlation with gene expressivity, Nucleic Acids Res. 10,7055-7074   DOI
25 Voget, S., C. Leggewie, A. Uesbeck, C. Raasch, K. E. Jaeger, and W. R. Streit (2003), Prospecting for Novel Biocatalysts in a Soil Metagenome, Appl. Envirn. Microbiol. 69, 6235-6242   DOI
26 Reese, M. G. (2001), Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome, Comput. Chem. 26, 51-56   DOI   ScienceOn
27 Handelsman, J., M. R. Rondon, S. F. Brady, J. Clardy, and R. M. Goodman (1998), Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products, Chem. Biol. 5, 245-249   DOI   ScienceOn
28 Martinez, A., S. J. Kolvek, C. L. Yip, J. Hopke, K. A. Brown, I. A. MacNeil, M. S. Osburne, K. Watanabe, Y. Kodama, N. Hamamura, and N. Kaku (2002), Diversity, abundance, and activity of archaeal populations inoil-contaminated groundwater accumulated at the bottom of an underground crude oil storage cavity, Appl. Environ. Microbiol. 68,3899-3907   DOI
29 Rondon, M. R., P. R. August, A. D. Bettermann, S. F. Brady, T. H. Grossman, M. R. Liles, K. A. Loiacono, B. A. Lynch, I. A. MacNeil, C. Minor, C. L. Tiong, M. Gilman, M. S. Osburne, J. Clardy, J. Handelsman, and R. M. Goodman (2000), Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms, Appl. Environ. Microbiol. 66, 2541-2547   DOI
30 Cowan, D., Q. Meyer, W. Stafford, S. Muyanga, R. Cameron, and P. Wittwer (2005), Metagenomic gene discovery: past, present and future, Trends Biotechnol. 23, 321-329   DOI   ScienceOn
31 Schmeisser, C., C. Stockigt, C. Raasch, J. Wingernder, K. N. Timmis, D. F. Wenderoth, H.-C. Flemming, H. Liesegang, R. A. Schmitz, K. E. Jaeger, and W. R. Streit (2003), Metagenome survey of biofilms in drinking-water networks, Appl. Environ. Microbiol. 69, 7298-7309   DOI