Browse > Article
http://dx.doi.org/10.4014/jmb.1206.06044

Alkaliphilic Endoxylanase from Lignocellulolytic Microbial Consortium Metagenome for Biobleaching of Eucalyptus Pulp  

Weerachavangkul, Chawannapak (Institute of Molecular Biosciences, Mahidol University)
Laothanachareon, Thanaporn (Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology)
Boonyapakron, Katewadee (Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology)
Wongwilaiwalin, Sarunyou (Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology)
Nimchua, Thidarat (Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology)
Eurwilaichitr, Lily (Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology)
Pootanakit, Kusol (Institute of Molecular Biosciences, Mahidol University)
Igarashi, Yasuo (Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo)
Champreda, Verawat (Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.12, 2012 , pp. 1636-1643 More about this Journal
Abstract
Enzymatic pre-bleaching by modification of pulp fibers with xylanases is an attractive approach to reduce the consumption of toxic bleaching chemicals in the paper industry. In this study, an alkaliphilic endoxylanase gene was isolated from metagenomic DNA of a structurally stable thermophilic lignocellulose-degrading microbial consortium using amplification with conserved glycosyl hydrolase family 10 primers and subsequent genome walking. The full-length xylanase showed 78% sequence identity to an endo-${\beta}$-1,4-xylanase of Clostridium phytofermentans and was expressed in a mature form with an N-terminal His6 tag fusion in Escherichia coli. The recombinant xylanase Xyn3F was thermotolerant and alkaliphilic, working optimally at $65-70^{\circ}C$ with an optimal pH at 9-10 and retaining >80% activity at pH 9, $60^{\circ}C$ for 1 h. Xyn3F showed a $V_{max}$ of 2,327 IU/mg and $K_m$ of 3.5 mg/ml on birchwood xylan. Pre-bleaching of industrial eucalyptus pulp with no prior pH adjustment (pH 9) using Xyn3F at 50 IU/g dried pulp led to 4.5-5.1% increase in final pulp brightness and 90.4-102.4% increase in whiteness after a single-step hypochlorite bleaching over the untreated pulp, which allowed at least 20% decrease in hypochlorite consumption to achieve the same final bleaching indices. The alkaliphilic xylanase is promising for application in an environmentally friendly bleaching step of kraft and soda pulps with no requirement for pH adjustment, leading to improved economic feasibility of the process.
Keywords
Biobleaching; metagenome; microbial consortium; pulp modification; xylanase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shrinivas, D., Savitha, G., Raviranjan, K., and G. R. Naik 2010. A highly thermostable alkaline cellulase-free xylanase from thermoalkalophilic bacillus sp. JB 99 suitable for paper and pulp industry: Purification and characterization. Appl. Biochem. Biotechnol. 162: 2049-2057.   DOI   ScienceOn
2 Torronen, A. and J. Rouvinen 1995. Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Biochemistry. 34: 847-856.   DOI   ScienceOn
3 Vielle, C., and G. J. Zeikus 2001. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65: 1-43.   DOI   ScienceOn
4 Voget, S., H. L. Steele, and W. R. Streit 2006. Characterization of a metagenome-derived halotolerant cellulase. J. Biotechnol. 126: 26-36.   DOI   ScienceOn
5 Warnecke, F., P. Luginbuhl, N. Ivanova, M. Ghassemian, T. H. Richardson, J. T. Stege, et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 450: 560-565.   DOI   ScienceOn
6 Gessesse, A. 1998. Purification and properties of two thermostable alkaline xylanases from an alkaliphilic Bacillus sp. Appl. Environ. Microbiol. 64: 3533-3535.
7 Giridhar, P. V. and T. S. Chandra 2010. Production of novel halo-alkali-thermo-stable xylanase by a newly isolated moderately halophilic and alkali-tolerant Gracilibacillus sp. TSCPVG. Proc. Biochem. 45:1730-1737.   DOI   ScienceOn
8 Gupta, S., B. Bhushan, and G. S. Hoondal 2000. Isolation, purification and characterization of xylanasefrom Staphylococcus sp. SG-13 and its application in biobleaching of kraft pulp. J. Appl. Microbiol. 88: 325-334.   DOI   ScienceOn
9 Zhu, H., F. Qu, and L. H. Zhu 1993. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res. 21: 5279-5280.   DOI   ScienceOn
10 Miller, G. L. 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 31: 426-428.   DOI
11 Ninawe, S. and R. C. Kuhad 2006. Bleaching of wheat strawrich soda pulp with xylanase from a thermoalkaliphilic Streptomyces cyaneus SN32. Bioresour. Technol. 97: 2291-2295.   DOI   ScienceOn
12 Paice, M. G., N. Gurnagul, D. H. Page, and L. Jurasek 1992. Mechanism of hemicellulose-directed prebleaching of kraft pulps. Enzyme Microb. Technol. 14: 272-276.   DOI   ScienceOn
13 Ragauskas, A. J., K. M. Poll, and A. J. Cesternino 1994. Effects of xylanase pretreatment procedures on nonchlorine bleaching. Enzyme Microb. Technol. 16: 492-495.   DOI   ScienceOn
14 Raghukumar, C., U. Muraleedharan, V. R. Gaud, and R. Mishra 2004. Xylanases of marine fungi of potential use for biobleaching of paper pulp. J. Ind. Microbiol. Biotechnol. 31: 433-441.   DOI   ScienceOn
15 Rattanachomsri, U., S. Tanapongpipat, L. Eurwilaichitr, and V. Champreda 2009. Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis. J. Biosci. Bioeng. 107: 488-493.   DOI   ScienceOn
16 Sandrim, V. C., A. C. S. Rizzatti, H. F. Terenzi, J. A. Jorge, A. M. F. Milagres, and M. L. T. M. Polizeli 2005. Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for kraft pulp bleaching. Process Biochem. 40: 1823-1828.   DOI   ScienceOn
17 Senthilkumar, S. R., M. Dempsey, C. Krishnan, and P. Gunasekaran 2008. Optimization of biobleaching of paper pulp in an expanded bed bioreactor with immobilized alkali stable xylanase by using response surface methodology. Bioresour. Technol. 99: 7781-7787.   DOI   ScienceOn
18 Zhao, J., X. Li, and Y. Qu 2006. Application of enzymes in producing bleached pulp from wheat straw. Bioresour. Technol. 97: 1470-1476.   DOI   ScienceOn
19 Warnick, T. A., B. A. Methe, and S. B. Leschine 2002. Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int. J. Syst. Evol. Microbiol. 52: 1155-1160.   DOI   ScienceOn
20 Wongwilaiwalin, S., U. Rattanachomsri, T. Laothanachareon, L. Eurwilaichitr, Y. Igarashi, and V. Champreda 2010. Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzyme Microb. Technol. 47: 283-290.   DOI   ScienceOn
21 Kimura, T., J. Ito, A. Kawano, T. Makino, H. Kondo, S. Karita, et al. 2000. Purification, characterization, and molecular cloning of acidophilic xylanase from Penicillium sp.40. Biosci. Biotechnol. Biochem. 64: 1230-1237.   DOI   ScienceOn
22 Khonzue, P., T. Laothanachareon, N. Rattanaphan, P. Tinnasulanon, S. Apawasin, A. Paemanee, et al. 2011. Optimization of xylanase production from Aspergillus niger for biobleaching of eucalyptus pulp. Biosci. Biotechnol. Biochem. 75: 1129-1134.   DOI   ScienceOn
23 Krengel, U. and B. W. Dijkstra 1996. Three-dimensional structure of Endo-1,4-beta-xylanase I from Aspergillus niger: molecular basis for its low pH optimum. J Mol. Biol. 263: 70-78.   DOI   ScienceOn
24 Li, C., Yuzhi, H., Zongze, S., Ling, L., Xiaoluo, H., Pengfu, L., Gaobing, W., Xin, M., and L. Ziduo 2010. Novel alkali-stable, cellulase-free xylanase from deep-sea Kocuria sp. Mn22. J. Microbiol. Biotechnol. 19: 873-880.
25 Mamo, G., Thunnissen, M., Hatti-Kaul, R., and B. Mattiasson 2009. An alkaline active xylanase: Insights into mechanisms of high pH adaptation. Biochemie 91: 1187-1196.   DOI   ScienceOn
26 Buchert, J., M. Tenkanen, A. Kantelinen, and L. Viikari 1994. Application of xylanases in the pulp and paper industry. Bioresour. Technol. 50: 65-72.   DOI   ScienceOn
27 Medeiros, R. G., F. G. Silva Jr., S. N. Báo, R. Hanada, and E. X. Ferreira Filho 2007. Application of xylanases from Amazon Forest fungal species in bleaching of eucalyptus kraft pulps. Braz. Arch. Biol. Technol. 50: 231-238.
28 Bajpai, P. 1999. Application of enzymes in the pulp and paper industry. Biotechnol. Prog. 15: 147-157.   DOI   ScienceOn
29 Betini, J. H., M. Michelin, S. C. Peixoto-Nogueira, J. A. Jorge, H. F. Terenzi, and M. L. Polizeli 2009. Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess Biosyst. Eng. 32: 819-824.   DOI   ScienceOn
30 Christov, L. P., G. Szakacs, and H. Balakrishnan 1999. Production, partial characterization and use of fungal cellulase-free xylanases in pulp bleaching. Process Biochem. 34: 511-517.   DOI   ScienceOn
31 Collins, T., C. Gerday, and G. Feller 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23.   DOI   ScienceOn
32 Daniel, R. 2004. The soil metagenome--a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15: 199-204.   DOI   ScienceOn
33 Duarte, M. C. T., A. C. A. Pellegrino, E. P. Portugal, A. N. Ponezi, and T. T. Franco 2000. Characterization of alkaline xylanases from Bacillus pumilus. Braz. J. Microbiol. 31: 90-94.
34 Duarte, M. C., E. C. da Silva, I. M. de Bulhoes Gomes, A. N. Ponezi, E. P. Portugal, J. R. Vicente, et al. 2003. Xylanhydrolyzing enzyme system from Bacillus pumilus CBMAI 0008 and its effects on Eucalyptus grandis kraft pulp for pulp bleaching improvement. Bioresour. Technol. 88: 9-15.   DOI   ScienceOn
35 Jeya, M., S. Thiagarajan, J. K. Lee, and P. Gunasekaran 2009. Cloning and expression of GH11 xylanase gene from Aspergillus fumigatus MKU1 in Pichia pastoris. J. Biosci. Bioeng. 108: 24-29.   DOI   ScienceOn
36 El-Shahed, K. Y. I. and M. El-Sakhawy 2003. Improvement of kraft bagasse pulp bleachability by treatment with fungi and their enzymes. IPPTA: Quarterly J. Indian Pulp and Paper Technical Association 15: 45-51.
37 Fushinobu, S., K. Ito, M. Konno, T. Wakagi, and H. Matsuzawa 1998. Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Protein Eng. 11: 1121-1128.   DOI
38 Hakulinen, N., O. Turunen, J. Janis, M. Leisola, and J. Rouvinen 2003. Three-dimensional structures of thermophilic beta-1,4- xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Comparison of twelve xylanases in relation to their thermal stability. Eur. J. Biochem. 270: 1399-1412.   DOI   ScienceOn
39 Iefuji, H., M. Chino, M. Kato, and Y. Iimura 1996. Acid xylanase from yeast Cryptococcus sp. S-2: purification, characterization, cloning, and sequencing. Biosci. Biotechnol. Biochem. 60: 1331-1338.   DOI   ScienceOn
40 Inagaki, K., K. Nakahira, K. Mukai, T. Tamura, and H. Tanaka 1998. Gene cloning and characterization of an acidic xylanase from Acidobacterium capsulatum. Biosci. Biotechnol. Biochem. 62: 1061-1067.   DOI   ScienceOn
41 Jiang, Z., X. Li, S. Yang, L. Li, Y. Li, and W. Feng 2006. Biobleach boosting effect of recombinant xylanase B from the hyperthermophilic Thermotoga maritima on wheat straw pulp. Appl. Microbiol. Biotechnol. 70: 65-71.   DOI   ScienceOn
42 Shedova, E. N., O. V. Berezina, N. A. Lunina, V. V. Zverlov, W. H. Schwartz, and G. A. Velikodvorskaia 2009. Cloning and characterization of a large metagenomic DNA fragment containing glycosyl-hydrolase genes. Mol. Gen. Mikrobiol. Virusol. 11-15.