Browse > Article
http://dx.doi.org/10.5187/jast.2022.e66

Gut microbiota profiling in aged dogs after feeding pet food contained Hericium erinaceus  

Hyun-Woo, Cho (National Institute of Animal Science, Rural Development Administration)
Soyoung, Choi (National Institute of Animal Science, Rural Development Administration)
Kangmin, Seo (National Institute of Animal Science, Rural Development Administration)
Ki Hyun, Kim (National Institute of Animal Science, Rural Development Administration)
Jung-Hwan, Jeon (National Institute of Animal Science, Rural Development Administration)
Chan Ho, Kim (National Institute of Animal Science, Rural Development Administration)
Sejin, Lim (National Institute of Animal Science, Rural Development Administration)
Sohee, Jeong (National Institute of Animal Science, Rural Development Administration)
Ju Lan, Chun (National Institute of Animal Science, Rural Development Administration)
Publication Information
Journal of Animal Science and Technology / v.64, no.5, 2022 , pp. 937-949 More about this Journal
Abstract
Health concern of dogs is the most important issue for pet owners. People who have companied the dogs long-term provide the utmost cares for their well-being and healthy life. Recently, it was revealed that the population and types of gut microbiota affect the metabolism and immunity of the host. However, there is little information on the gut microbiome of dogs. Hericium erinaceus (H. erinaceus; HE) is one of the well-known medicinal mushrooms and has multiple bioactive components including polyphenol, β-glucan, polysaccharides, ergothioneine, hericerin, erinacines, etc. Here we tested a pet food that contained H. erinaceus for improvement in the gut microbiota environment of aged dogs. A total of 18 dogs, each 11 years old, were utilized. For sixteen weeks, the dogs were fed with 0.4 g of H. erinaceus (HE-L), or 0.8 g (HE-H), or without H. erinaceus (CON) per body weight (kg) with daily diets (n = 6 per group). Taxonomic analysis was performed using metagenomics to investigate the difference in the gut microbiome. Resulting from principal coordinates analysis (PCoA) to confirm the distance difference between the groups, there was a significant difference between HE-H and CON due to weighted Unique fraction metric (Unifrac) distance (p = 0.047), but HE-L did not have a statistical difference compared to that of CON. Additionally, the result of Linear discriminate analysis of effect size (LEfSe) showed that phylum Bacteroidetes in HE-H and its order Bacteroidales increased, compared to that of CON, Additionally, phylum Firmicutes in HE-H, and its genera (Streptococcus, Tyzzerella) were reduced. Furthermore, at the family level, Campylobacteraceae and its genus Campylobacter in HE-H was decreased compared to that of CON. Summarily, our data demonstrated that the intake of H. erinaceus can regulate the gut microbial community in aged dogs, and an adequate supply of HE on pet diets would possibly improve immunity and anti-obesity on gut-microbiota in dogs.
Keywords
Hericium erinaceus; Aged dogs; Gut microbiota; Metagenomic analysis; Taxonomic profile;
Citations & Related Records
Times Cited By KSCI : 16  (Citation Analysis)
연도 인용수 순위
1 Kim YO, Lee SW, Oh CH, Rhee YH. Hericium erinaceus suppresses LPS-induced proinflammation gene activation in RAW264.7 macrophages. Immunopharmacol Immunotoxicol. 2012;34:504-12. https://doi.org/10.3109/08923973.2011.633527   DOI
2 Mori K, Ouchi K, Hirasawa N. The anti-inflammatory effects of lion's mane culinary-medicinal mushroom, Hericium erinaceus (higher Basidiomycetes) in a coculture system of 3T3-L1 adipocytes and RAW264 macrophages. Int J Med Mushrooms. 2015;17:609-18. https://doi.org/10.1615/IntJMedMushrooms.v17.i7.10   DOI
3 Ma BJ, Shen JW, Yu HY, Ruan Y, Wu TT, Zhao X. Hericenones and erinacines: stimulators of nerve growth factor (NGF) biosynthesis in Hericium erinaceus. Mycology. 2010;1:92-8. https://doi.org/10.1080/21501201003735556   DOI
4 Lee KF, Chen JH, Teng CC, Shen CH, Hsieh MC, Lu CC, et al. Protective effects of Hericium erinaceus mycelium and its isolated erinacine A against ischemia-injury-induced neuronal cell death via the inhibition of iNOS/p38 MAPK and nitrotyrosine. Int J Mol Sci. 2014;15:15073-89. https://doi.org/10.3390/ijms150915073   DOI
5 Liu Y, Zhang H, Tang X, Jiang X, Yan X, Liu X, et al. Distinct metagenomic signatures in the SARS-CoV-2 infection. Front Cell Infect Microbiol. 2021;11:706970. https://doi.org/10.3389/fcimb.2021.706970   DOI
6 Chen YJ, Wu H, Wu SD, Lu N, Wang YT, Liu HN, et al. Parasutterella, in association with irritable bowel syndrome and intestinal chronic inflammation. J Gastroenterol Hepatol. 2018;33:1844-52. https://doi.org/10.1111/jgh.14281   DOI
7 Decaestecker E, Gaba S, Raeymaekers JAM, Stoks R, Van Kerckhoven L, Ebert D, et al. Host-parasite 'Red Queen' dynamics archived in pond sediment. Nature. 2007;450:870-3. https://doi.org/10.1038/nature06291   DOI
8 Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA. The evolution of host-symbiont dependence. Nat Commun. 2017;8:15973. https://doi.org/10.1038/ncomms15973   DOI
9 Ma B, Wang Y, Ye S, Liu S, Stirling E, Gilbert JA, et al. Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome. 2020;8:82. https://doi.org/10.1186/s40168-020-00857-2   DOI
10 Rottjers L, Faust K. From hairballs to hypotheses-biological insights from microbial networks. FEMS Microbiol Rev. 2018;42:761-80. https://doi.org/10.1093/femsre/fuy030   DOI
11 Kushairi N, Phan CW, Sabaratnam V, David P, Naidu M. Lion's mane mushroom, Hericium erinaceus (Bull.: Fr.) Pers. suppresses H2O2-induced oxidative damage and LPS-induced inflammation in HT22 hippocampal neurons and BV2 microglia. Antioxidants. 2019;8:261. https://doi.org/10.3390/antiox8080261   DOI
12 Hiraki E, Furuta S, Kuwahara R, Takemoto N, Nagata T, Akasaka T, et al. Anti-obesity activity of Yamabushitake (Hericium erinaceus) powder in ovariectomized mice, and its potentially active compounds. J Nat Med. 2017;71:482-91. https://doi.org/10.1007/s11418-017-1075-8   DOI
13 Chang HC, Yang HL, Pan JH, Korivi M, Pan JY, Hsieh MC, et al. Hericium erinaceus inhibits TNF-α-induced angiogenesis and ROS generation through suppression of MMP-9/NF-κB signaling and activation of Nrf2-mediated antioxidant genes in human EA.hy926 endothelial cells. Oxid Med Cell Longev. 2016;2016:8257238. https://doi.org/10.1155/2016/8257238   DOI
14 Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 2017;8:172-84. https://doi.org/10.1080/19490976.2017.1290756   DOI
15 Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients. 2016;8:78. https://doi.org/10.3390/nu8020078   DOI
16 Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852-7. https://doi.org/10.1038/s41587-019-0209-9   DOI
17 Perez-Reytor D, Puebla C, Karahanian E, Garcia K. Use of short-chain fatty acids for the recovery of the intestinal epithelial barrier affected by bacterial toxins. Front Physiol. 2021;12:650313. https://doi.org/10.3389/fphys.2021.650313   DOI
18 Yang Y, Ye H, Zhao C, Ren L, Wang C, Georgiev MI, et al. Value added immunoregulatory polysaccharides of Hericium erinaceus and their effect on the gut microbiota. Carbohydr Polym. 2021;262:117668. https://doi.org/10.1016/j.carbpol.2021.117668   DOI
19 Wilmanski T, Diener C, Rappaport N, Patwardhan S, Wiedrick J, Lapidus J, et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat Metab. 2021;3:274-86. https://doi.org/10.1038/s42255-021-00377-0   DOI
20 Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10-2. https://doi.org/10.14806/ej.17.1.200   DOI
21 Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581-3. https://doi.org/10.1038/nmeth.3869   DOI
22 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590-6. https://doi.org/10.1093/nar/gks1219   DOI
23 Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10:1200-2. https://doi.org/10.1038/nmeth.2658   DOI
24 Ozato N, Saito S, Yamaguchi T, Katashima M, Tokuda I, Sawada K, et al. Blautia genus associated with visceral fat accumulation in adults 20-76 years of age. NPJ Biofilms Microbiomes. 2019;5:28. https://doi.org/10.1038/s41522-019-0101-x   DOI
25 Wang D, Zhu X, Tang X, Li H, Yizhen X, Chen D. Auxiliary antitumor effects of fungal proteins from Hericium erinaceus by target on the gut microbiota. J Food Sci. 2020;85:1872-90. https://doi.org/10.1111/1750-3841.15134   DOI
26 Turner PV. The role of the gut microbiota on animal model reproducibility. Anim Model Exp Med. 2018;1:109-15. https://doi.org/10.1002/ame2.12022   DOI
27 De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107:14691-6. https://doi.org/10.1073/pnas.1005963107   DOI
28 Chun JL, Ji SY, Lee SD, Lee YK, Kim B, Kim KH. Difference of gut microbiota composition based on the body condition scores in dogs. J Anim Sci Technol. 2020;62:239-46. https://doi.org/10.5187/jast.2020.62.2.239   DOI
29 Handl S, Dowd SE, Garcia-Mazcorro JF, Steiner JM, Suchodolski JS. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiol Ecol. 2011;76:301-10. https://doi.org/10.1111/j.1574-6941.2011.01058.x   DOI
30 Hooda S, Minamoto Y, Suchodolski JS, Swanson KS. Current state of knowledge: the canine gastrointestinal microbiome. Anim Health Res Rev. 2012;13:78-88. https://doi.org/10.1017/S1466252312000059   DOI
31 Stojanov S, Berlec A, Strukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8:1715. https://doi.org/10.3390/microorganisms8111715   DOI
32 Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213-23. https://doi.org/10.1016/j.chom.2008.02.015   DOI
33 Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005;102:11070-5. https://doi.org/10.1073/pnas.0504978102   DOI
34 Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027-31. https://doi.org/10.1038/nature05414   DOI
35 Million M, Lagier JC, Yahav D, Paul M. Gut bacterial microbiota and obesity. Clin Microbiol Infect. 2013;19:305-13. https://doi.org/10.1111/1469-0691.12172   DOI
36 Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature. 2006;444:1022-3. https://doi.org/10.1038/4441022a   DOI
37 Li Q, Lauber CL, Czarnecki-Maulden G, Pan Y, Hannah SS. Effects of the dietary protein and carbohydrate ratio on gut microbiomes in dogs of different body conditions. mBio. 2017;8:e01703-16. https://doi.org/10.1128/mBio.01703-16   DOI
38 Balta I, Butucel E, Stef L, Pet I, Gradisteanu-Pircalabioru G, Chifiriuc C, et al. AntiCampylobacter probiotics: latest mechanistic insights. Foodborne Pathog Dis. Forthcoming 2022. https://doi.org/10.1089/fpd.2022.0039   DOI
39 Moore JE, Corcoran D, Dooley JSG, Fanning S, Lucey B, Matsuda M, et al. Campylobacter. Vet Res. 2005;36:351-82. https://doi.org/10.1051/vetres:2005012   DOI
40 Smialek M, Kowalczyk J, Koncicki A. The use of probiotics in the reduction of Campylobacter spp. prevalence in poultry. Animals. 2021;11:1355. https://doi.org/10.3390/ani11051355   DOI
41 Yankner BA, Shooter EM. The biology and mechanism of action of nerve growth factor. Annu Rev Biochem. 1982;51:845-68. https://doi.org/10.1146/annurev.bi.51.070182.004213   DOI
42 Sayols-Baixeras S, Dekkers KF, Hammar U, Baldanzi G, Lin YT, Ahmad S, et al. Streptococcus species abundance in the gut is linked to subclinical coronary atherosclerosis in 8,973 participants from the SCAPIS cohort. medRxiv [preprint]. 2022 [cited 2022 Jul 05]. https://doi.org/10.1101/2022.05.25.22275561   DOI
43 Brandsma E, Kloosterhuis NJ, Koster M, Dekker DC, Gijbels MJJ, van der Velden S, et al. A proinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis. Circ Res. 2019;124:94-100. https://doi.org/10.1161/CIRCRESAHA.118.313234   DOI
44 Kelly TN, Bazzano LA, Ajami NJ, He H, Zhao J, Petrosino JF, et al. Gut microbiome associates with lifetime cardiovascular disease risk profile among bogalusa heart study participants. Circ Res. 2016;119:956-64. https://doi.org/10.1161/CIRCRESAHA.116.309219   DOI
45 Larsen JA, Farcas A. Nutrition of aging dogs. Vet Clin North Am Small Anim Pract. 2014;44:741-59. https://doi.org/10.1016/j.cvsm.2014.03.003   DOI
46 McKenzie BA, Chen FL, Gruen ME, Olby NJ. Canine geriatric syndrome: a framework for advancing research in veterinary geroscience. Front Vet Sci. 2022;9:853743. https://doi.org/10.3389/fvets.2022.853743   DOI
47 Kaeberlein M, Creevy KE, Promislow DEL. The dog aging project: translational geroscience in companion animals. Mamm Genome. 2016;27:279-88. https://doi.org/10.1007/s00335-016-9638-7   DOI
48 Hall JA, Jewell DE. Feeding healthy beagles medium-chain triglycerides, fish oil, and carnitine offsets age-related changes in serum fatty acids and carnitine metabolites. PLOS ONE. 2012;7:e49510. https://doi.org/10.1371/journal.pone.0049510   DOI
49 Pierchala BA, Ahrens RC, Paden AJ, Johnson EM Jr. Nerve growth factor promotes the survival of sympathetic neurons through the cooperative function of the protein kinase C and phosphatidylinositol 3-kinase pathways. J Biol Chem. 2004;279:27986-93. https://doi.org/10.1074/jbc.M312237200   DOI
50 Obara Y, Nakahata N. The signaling pathway of neurotrophic factor biosynthesis. Drug News Perspect. 2002;15:290-8. https://doi.org/10.1358/dnp.2002.15.5.840042   DOI
51 Qiu Y, Chen Z, Su E, Wang L, Sun L, Lei P, et al. Recent strategies for the biosynthesis of ergothioneine. J Agric Food Chem. 2021;69:13682-90. https://doi.org/10.1021/acs.jafc.1c05280   DOI
52 Roda E, Ratto D, De Luca F, Desiderio A, Ramieri M, Goppa L, et al. Searching for a longevity food, we bump into Hericium erinaceus primordium rich in ergothioneine: the "longevity vitamin" improves locomotor performances during aging. Nutrients. 2022;14:1177. https://doi.org/10.3390/nu14061177   DOI
53 Inanaga K. Marked improvement of neurocognitive impairment after treatment with compounds from Hericium erinaceum: a case study of recurrent depressive disorder. Pers Med Univ. 2014;3:46-8. https://doi.org/10.1016/j.pmu.2014.02.004   DOI
54 Dubost NJ, Ou B, Beelman RB. Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chem. 2007;105:727-35. https://doi.org/10.1016/j.foodchem.2007.01.030   DOI
55 Cheah IK, Halliwell B. Ergothioneine, recent developments. Redox Biol. 2021;42:101868. https://doi.org/10.1016/j.redox.2021.101868   DOI
56 Kim S. Antioxidant compounds for the inhibition of enzymatic browning by polyphenol oxidases in the fruiting body extract of the edible mushroom Hericium erinaceus. Foods. 2020;9:951. https://doi.org/10.3390/foods9070951   DOI
57 Akdogan Kaymaz A. The place of geroprotective agents in life quality and longevity of companion animals. In: Rizvi S, Cakatay U, editors. Molecular basis and emerging strategies for anti-aging interventions. Singapore: Springer; 2018. p. 373-86.
58 Hou Y, Ding X, Hou W. Composition and antioxidant activity of water-soluble oligosaccharides from Hericium erinaceus. Mol Med Rep. 2015;11:3794-9. https://doi.org/10.3892/mmr.2014.3121   DOI
59 Qin T, Liu X, Luo Y, Yu R, Chen S, Zhang J, et al. Characterization of polysaccharides isolated from Hericium erinaceus and their protective effects on the DON-induced oxidative stress. Int J Biol Macromol. 2020;152:1265-73. https://doi.org/10.1016/j.ijbiomac.2019.10.223   DOI
60 Hou X, Liu J, Li Z, Chang M, Guo M, Feng C, et al. Fruiting body polysaccharides of Hericium erinaceus induce apoptosis in human colorectal cancer cells via ROS generation mediating caspase-9-dependent signaling pathways. Food Funct. 2020;11:6128-38. https://doi.org/10.1039/D0FO00916D   DOI