Browse > Article

Fine-Scale Population Structure of Accumulibacter phosphatis in Enhanced Biological Phosphorus Removal Sludge  

Wang, Qian (Division of Applied Life Science, EB-NCRC, PMBBRC, Gyeongsang National University)
Shao, Yongqi (Division of Applied Life Science, EB-NCRC, PMBBRC, Gyeongsang National University)
Huong, Vu Thi Thu (Division of Applied Life Science, EB-NCRC, PMBBRC, Gyeongsang National University)
Park, Woo-Jun (Division of Environmental Science and Ecological Engineering, Korea University)
Park, Jong-Moon (Advanced Environmental Biotechnology Research Center, School of Environmental Science and Engineering)
Jeon, Che-Ok (Department of Life Science, Chung-Ang University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.7, 2008 , pp. 1290-1297 More about this Journal
Abstract
To investigate the diversities of Accumulibacter phosphatis and its polyhydroxyalkanoate (PHA) synthase gene (phaC) in enhanced biological phosphorus removal (EBPR) sludge, an acetate-fed sequencing batch reactor was operated. Analysis of microbial communities using fluorescence in situ hybridization and 16S rRNA gene clone libraries showed that the population of Accumulibacter phosphatis in the EBPR sludge comprised more than 50% of total bacteria, and was clearly divided into two subgroups with about 97.5% sequence identity of the 16S rRNA genes. PAO phaC primers targeting the phaC genes of Accumulibacter phosphatis were designed and applied to retrieve fragments of putative phaC homologs of Accumulibacter phosphatis from EBPR sludge. PAO phaC primers targeting $G_{1PAO},\;G_{2PAO},\;and\;G_{3PAO}$ groups produced PCR amplicons successfully; the resulting sequences of the phaC gene homologs were diverse, and were distantly related to metagenomic phaC sequences of Accumulibacter phosphatis with 75-98% DNA sequence identities. Degenerate NPAO (non-PAO) phaC primers targeting phaC genes of non-Accumulibacter phosphatis bacteria were also designed and applied to the EBPR sludge. Twenty-four phaC homologs retrieved from NPAO phaC primers were different from the phaC gene homologs derived from Accumulibacter phosphatis, which suggests that the PAO phaC primers were specific for the amplification of phaC gene homologs of Accumulibacter phosphatis, and the putative phaC gene homologs by PAO phaC primers were derived from Accumulibacter phosphatis in the EBPR sludge. Among 24 phaC homologs, a phaC homolog (GINPAO-2), which was dominant in the NPAO phaC clone library, showed the strongest signal in slot hybridization and shared approximately 60% nucleotide identity with the $G_{4PAO}$ group of Accumulibacter phosphatis, which suggests that GINPAO-2 might be derived from Accumulibacter phosphatis. In conclusion, analyses of the 16S rRNA and phaC genes showed that Accumulibacter phosphatis might be phylogenetically and metabolically diverse.
Keywords
EBPR; diversity; Rhodocyclus; "Candidatus Accumulibacter phosphatis"; phaC;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169
2 Carvalho, G., P. C. Lemos, A. Oehmen, and M. A. Reis. 2007. Denitrifying phosphorus removal: Linking the process performance with the microbial community structure. Water Res. 41: 4383-4396   DOI   ScienceOn
3 Cech, J. S., P. Hartman, and J. Wanner. 1993. Competition between polyp and non-polyP bacteria in an enhanced phosphate removal system. Water Environ. Res. 65: 690-692   DOI
4 Jeon, C. O. and J. M. Park. 2000. Enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose as a sole carbon source. Water Res. 34: 2160-2170   DOI   ScienceOn
5 Kortstee, G. J. J., K. J. Appeldoorn, C. F. C. Bonting, W. J. van Niel, and H. J. van Veen. 2000. Ecological aspects of biological phosphorus removal in activated sludge systems. Adv. Microb. Ecol. 16: 169-199
6 Linhart, C. and R. Shamir. 2005. The degenerate primer design problem: Theory and applications. J. Comput. Biol. 12: 431-456   DOI   ScienceOn
7 Mino, T., M. C. M. van Loosdrecht, and J. J. Heijnen. 1998. Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res. 32: 3193-3207   DOI   ScienceOn
8 Sambrook, J. and K. J. Janssen. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
9 Wentzel, M. C., L. H. Lötter, R. E. Loewenthal, and G. R. Marais. 1986. Metabolic behaviour of Acinetobacter spp. in enhanced biological phosphorus removal - a biochemical model. Water SA 12: 209-224
10 Jeon, C. O., D. S. Lee, M. W. Lee, and J. M. Park. 2001. Enhanced biological phosphorus removal in an anaerobic-aerobic sequencing batch reactor: Effect of pH. Water Environ. Res. 73: 301-306   DOI   ScienceOn
11 Wong, M.-T., T. Mino, R. J. Seviour, M. Onuki, and W.-T. Liu. 2005. In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan. Water Res. 39: 2901-2914   DOI   ScienceOn
12 Jeon, C. O., W. Park, P. Padmanabhan, C. DeRito, J. R. Snape, and E. L. Madsen. 2003. Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc. Natl. Acad. Sci. USA 100: 13591-13596
13 Crocetti, G. R., P. Hugenholtz, P. L. Bond, A. Schuler, J. Keller, D. Jenkins, and L. L. Blackall. 2000. Identification of polyphosphate-accumulating organisms and design of 16S rRNA directed probes for their detection and quantitation. Appl. Environ. Microbiol. 66: 1175-1182   DOI   ScienceOn
14 Jeon, C. O., S. H. Woo, and J. M. Park. 2003. Microbial communities of activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose. J. Microbiol. Biotechnol. 13: 385-393
15 Felsenstein, J. 2002. PHYLIP (phylogeny inference package), version 3.6a. Department of Genetics, University of Washington, Seattle, WA, U.S.A
16 Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-147. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, New York
17 Hesselmann, R. P., C. Werlen, D. Hahn, J. R. van der Meer, and A. J. Zehnder. 1999. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst. Appl. Microbiol. 22: 454-465   DOI   ScienceOn
18 Liu, W. T., T. Mino, K. Nakamura, and T. Matsuo. 1996. Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge with biological phosphorus removal. Water Res. 30: 75-82   DOI   ScienceOn
19 Huber, T., G. Faulkner, and P. Hugenholtz. 2004. Bellerophon; a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317-2319   DOI   ScienceOn
20 McMahon, K. D., M. A. Dojka, N. R. Pace, D. Jenkins, and J. D. Keasling. 2002. Polyphosphate kinase from activated sludge performing enhanced biological phosphorus removal. Appl. Environ. Microbiol. 68: 4971-4978   DOI   ScienceOn
21 Zilles, J. L., J. Peccia, M.-W. Kim, C.-H. Hung, and D. R. Noguera. 2002. Involvement of Rhodocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants. Appl. Environ. Microbiol. 68: 2763-2769   DOI   ScienceOn
22 Comeau, Y., K. J. Hall, R. E. W. Hancock, and W. K. Oldham. 1986. Biochemical model for enhanced biological phosphorus removal. Water Res. 20: 1511-1521   DOI   ScienceOn
23 Kang, C. H., Y. D. Nam, W. H. Chung, Z. X. Quan, Y. H. Park, S. J. Park, R. Desmone, X. F. Wan, and S. K. Rhee. 2007. Relationship between genome similarity and DNA-DNA hybridization among closely related bacteria. J. Microbiol. Biotechnol. 17: 945-951   과학기술학회마을
24 Rho, J. K., M. H. Choi, J. H. Shim, S.-Y. Lee, M. J. Woo, B.-S. Ko, K.-W. Chi, and S. C. Yoon. 2007. Swinging effect of salicylic acid on the accumulation of polyhydroxyalkanoic acid (PHA) in Pseudomonas aeruginosa BM114 synthesizing both MCL- and SCL-PHA. J. Microbiol. Biotechnol. 17: 2018-2026   과학기술학회마을
25 Kong, Y., J. L. Nielsen, and P. H. Nielsen. 2004. Microautoradiographic study of Rhodocyclus-related polyphosphateaccumulating bacteria in full-scale enhanced biological phosphorus removal plants. Appl. Environ. Microbiol. 70: 5383-5390   DOI   ScienceOn
26 Garcia Mart n, H., N. Ivanoval, V. Kunin, F. Warnecke, K. W. Barry, A. C. McHardy, et al. 2006. Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat. Biotechnol. 24: 1263-1269   DOI   ScienceOn
27 Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680   DOI   ScienceOn
28 Jeon, C. O., D. S. Lee, and J. M. Park. 2003. Microbial communities in activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor. Water Res. 37: 2195-2205   DOI   ScienceOn
29 Michinaka, A., J. Arou, M. Onuki, H. Satoh, and T. Mino. 2007. Analysis of polyhydroxyalkanoate (PHA) synthase gene in activated sludge that produces PHA containing 3-hydroxy-2-methylvalerate. Biotechnol. Bioeng. 96: 871-880   DOI   ScienceOn
30 Lu, S., M. Park, H. S. Ro, D. S. Lee, W. Park, and C. O. Jeon. 2006. Analysis of microbial communities using culturedependent and culture-independent approaches in an anaerobic/aerobic SBR reactor. J. Microbiol. 44: 155-161   과학기술학회마을
31 Saunders, A. M., A. Oehmen, L. L. Blackall, Z. Yuan, and J. Keller. 2003. The effect of GAOs (glycogen accumulating organisms) on anaerobic carbon requirements in full-scale Australian EBPR (enhanced biological phosphorus removal) plants. Water Sci. Technol. 47: 37-43
32 He, S., D. L. Gall, and K. D. McMahon. 2007. Accumulibacter population structure in enhanced biological phosphorus removal sludges revealed by polyphosphate kinase genes. Appl. Environ. Microbiol. 73: 5865-5874   DOI   ScienceOn
33 Seviour, R. J., T. Mino, and M. Onuki. 2003. The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol. Rev. 27: 99-127   DOI   ScienceOn
34 Thompson, J. R., L. A. Marcelino, and M. F. Polz. 2002. Heteroduplexes in mixed-template amplifications: Formation, consequence and elimination by 'reconditioning PCR'. Nucleic Acids Res. 30: 2083-2088   DOI   ScienceOn
35 Bond, P. L., P. Hugenholtz, J. Keller, and L. L. Blackall. 1995. Bacterial community structures of phosphate-removing and nonphosphate- removing activated sludges from sequencing batch reactors. Appl. Environ. Microbiol. 61: 1910-1916
36 Lee, J. W., E. S. Choi, K. I. Gil, H. W. Lee, S. H. Lee, S. Y. Lee, and Y. K. Park. 2001. Removal behavior of biological nitrogen and phosphorus and prediction of microbial community composition with its function in an anaerobic-anoxic system from weak sewage. J. Microbiol. Biotechnol. 11: 994-1001
37 Daims, H., A. Bruhl, R. Amann, K.-H. Schleifer, and M. Wagner. 1999. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: Development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22: 434-444   DOI   ScienceOn
38 Hugenholtz, P., G. W. Tyson, and L. L. Blackall. 2002. Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization. Methods Mol. Biol. 179: 29-42
39 Jeon, C. O., D. S. Lee, and J. M. Park. 2001. Enhanced biological phosphorus removal in an anaerobic/aerobic sequencing batch reactor: Characteristics of carbon metabolism. Water Environ. Res. 73: 301-306   DOI   ScienceOn
40 Lee, N., P. H. Nielsen, H. Aspegren, M. Henze, K. H. Schleifer, and J. la Cour Jansen. 2003. Long-term population dynamics and in situ physiology in activated sludge systems with enhanced biological phosphorus removal operated with and without nitrogen removal. Syst. Appl. Microbiol. 26: 211-227   DOI   ScienceOn
41 Park, I. J., Y. H. Rhee, N. Y. Cho, and K. S. Shin. 2006. Cloning and analysis of medium-chain-length poly(3-hydroxyalkanoate) depolymerase gene of Pseudomonas luteola M13-4. J. Microbiol. Biotechnol. 16: 1935-1939   과학기술학회마을