• 제목/요약/키워드: metabolite analysis

검색결과 447건 처리시간 0.028초

Development and validation of a qualitative GC-MS method for methamphetamine and amphetamine in human urine using aqueous-phase ethyl chloroformate derivatization

  • Kim, Jiwoo;Sim, Yeong Eun;Kim, Jin Young
    • 분석과학
    • /
    • 제33권1호
    • /
    • pp.23-32
    • /
    • 2020
  • Methamphetamine (MA) is the most common and available drug of abuse in Korea and its primary metabolite is amphetamine (AP). Detection of AP derivatives, such as MA, AP, phentermine (PT), MDA, MDMA, and MDEA by the use of immunoassay screening is not reliable and accurate due to cross-reactivity and insufficient specificity/sensitivity. Therefore, the analytical process accepted by most urine drug-testing programs employs the two-step method with an initial screening test followed by a more specific confirmatory test if the specimen screens positive. In this study, a gas chromatography-mass spectrometric (GC-MS) method was developed and validated for confirmation of MA and AP in human urine. Urine sample (500 µL) was added with N-isopropylbenzylamine as internal standard and ethyl chloroformate as a derivatization reagent, and then extracted with 200 µL of ethyl acetate. Extracted samples were analysed with GC-MS in the SIM/ Scan mode, which were screened by Cobas c311 analyzer (Roche/Hitachi) to evaluate the efficiency as well as the compatibility of the GC-MS method. Qualitative method validation requirements for selectivity, limit of detection (LOD), precision, accuracy, and specificity/sensitivity were examined. These parameters were estimated on the basis of the most intense and characteristic ions in mass spectra of target compounds. Precision and accuracy were less than 5.2 % (RSD) and ±14.0 % (bias), respectively. The LODs were 3 ng/mL for MA and 1.5 ng/mL for AP. At the screening immunoassay had a sensitivity of 100% and a specificity of 95.1 % versus GC-MS for confirmatory testing. The applicability of the method was tested by the analysis of spiked urine and abusers' urine samples.

한국에서 최초로 발견된 알캅톤뇨증 1례 (A case of alkaptonuria : the first case in Korea)

  • 남지형;이종현;박경배;이동환
    • Clinical and Experimental Pediatrics
    • /
    • 제49권3호
    • /
    • pp.329-331
    • /
    • 2006
  • 알캅톤뇨증은 상염색체 열성으로 유전하는 드문 질환으로 homogentisic acid oxidase 결핍에 의해 homogentisic acid가 체내 축적되고 소변으로 다량 배설되는 대사 이상 질환이다. 주로 도미니카 공화국과 슬로바키아에서 보고되고 있으나 한국에는 아직 보고된 바 없다. 증상으로는 소아 때에는 주로 배뇨 후 시간이 지나면 소변 색이 검어지는 특징이 보이고, 나이가 들면서 연골과 결체 조직의 착색, 관절염, 갈색증, 심장 질환, 신장 질환 등이 발생할 수 있다. 특별히 효과가 입증된 치료제는 없는 것으로 보고되고 있고, 진단은 뇨유기산분석을 통해 할 수 있다. 저자들은 내원 당시 13개월이었던 여자 환아에서 기저귀에 묻은 소변이 시간이 지나면서 연분홍 갈색빛을 보여 시행한 뇨유기산분석에서 homogentisic acid (normal range <2 mmol/molCr)가 1,158.3 mmol/molCr로 현저한 증가 소견을 보여 보고하는 바이다. 재검사에서도 역시 910.7 mmol/molCr 로 증가된 소견을 보였으며 환아 신체 어디에서도 연갈색이나 검은색의 착색된 부위를 찾을 수 없었다. 환아는 현재 ascorbic acid 투여하며 추적관찰 중이다.

Metabolite profiling of fermented ginseng extracts by gas chromatography mass spectrometry

  • Park, Seong-Eun;Seo, Seung-Ho;Lee, Kyoung In;Na, Chang-Su;Son, Hong-Seok
    • Journal of Ginseng Research
    • /
    • 제42권1호
    • /
    • pp.57-67
    • /
    • 2018
  • Background: Ginseng contains many small metabolites such as amino acids, fatty acids, carbohydrates, and ginsenosides. However, little is known about the relationships between microorganisms and metabolites during the entire ginseng fermentation process. We investigated metabolic changes during ginseng fermentation according to the inoculation of food-compatible microorganisms. Methods: Gas chromatography mass spectrometry (GC-MS) datasets coupled with the multivariate statistical method for the purpose of latent-information extraction and sample classification were used for the evaluation of ginseng fermentation. Four different starter cultures (Saccharomyces bayanus, Bacillus subtilis, Lactobacillus plantarum, and Leuconostoc mesenteroide) were used for the ginseng extract fermentation. Results: The principal component analysis score plot and heat map showed a clear separation between ginseng extracts fermented with S. bayanus and other strains. The highest levels of fructose, maltose, and galactose in the ginseng extracts were found in ginseng extracts fermented with B. subtilis. The levels of succinic acid and malic acid in the ginseng extract fermented with S. bayanus as well as the levels of lactic acid, malonic acid, and hydroxypruvic acid in the ginseng extract fermented with lactic acid bacteria (L. plantarum and L. mesenteroide) were the highest. In the results of taste features analysis using an electronic tongue, the ginseng extracts fermented with lactic acid bacteria were significantly distinguished from other groups by a high index of sour taste probably due to high lactic acid contents. Conclusion: These results suggest that a metabolomics approach based on GC-MS can be a useful tool to understand ginseng fermentation and evaluate the fermentative characteristics of starter cultures.

Changes in the metabolic profile and nutritional composition of rice in response to NaCl stress

  • Nam, Kyong-Hee;Kim, Do Young;Shin, Hee Jae;Pack, In-Soon;Kim, Chang-Gi
    • 농업과학연구
    • /
    • 제45권2호
    • /
    • pp.154-168
    • /
    • 2018
  • Salinity is a major abiotic stress that adversely affects crop productivity and quality. In this study, the metabolic profile and nutritional composition of rice in response to NaCl were analyzed. The plants were exposed to stressed or unstressed conditions, and their metabolic changes were examined in the shoots, roots, and grains collected at different growth stages. The levels of nutrients and anti-nutrients, including proximates, amino acids, fatty acids, minerals, vitamins, and phytic acid, were also determined for the grains. Application of NaCl significantly decreased the shoot and root growth and induced metabolic alterations at the tillering stage. During the heading stage, only the root metabolites were influenced by NaCl, and no metabolic variations related to salinity were found in the shoot, roots, and grains at the ripening stage. Nutritional analysis of the grain samples revealed that the amounts of linolenic acid and tricosanoic acid were significantly reduced while those of copper, sodium, and phytic acid were enhanced in response to stress. However, except for sodium, those differences were not great. Our results suggest that although NaCl-salinity influences the phenotypic and metabolic profiles of rice shoots and roots at the tillering stage, this impact becomes negligible as tissue development proceeds. This is especially true for the grains. Compositional analysis of the grains indicated that salinity induces some changes in fatty acids, minerals, and anti-nutrients.

바이오 디지털 콘텐츠를 이용한 독성의 분석 (Analysis of toxicity using bio-digital contents)

  • 강진석
    • 디지털콘텐츠학회 논문지
    • /
    • 제11권1호
    • /
    • pp.99-104
    • /
    • 2010
  • 화학물질은 생체에 들어오면 여러 가지 독성반응을 나타내는데, 독성반응에 따른 유전자 발현을 분석하기 위해 바이오 칩 등을 이용한 신기술이 확산되면서 바이오 디지털 콘텐츠가 다량으로 생성되고 있다. 이 콘텐츠는 그 자체로는 의미가 적고 컴퓨터를 이용한 분석과 보정과정을 거쳐 생물학적으로 의미 있는 값들을 선별하여야 한다. 이런 콘텐츠에는 유전자들의 발현 양상 측정을 목적으로 하는 유전체학(genomics), 유전자의 발현 양상을 측정하는 전사체학(transcriptomics), 단백질의 발현을 측정하는 단백체학(proteomics), 대사체의 발현을 측정하는 대사체학(metabolomics) 등이 있으며, 이를 통칭하여 오믹스(omics)라고 부른다. 오믹스 기술을 독성을 연구하는 분야에 접목한 것이 독성유전체학(toxicogenomics)이며, 이에 대한 콘텐츠를 분석함으로써 독성을 예측하고 독성기전을 규명할 수 있다. 독성분석에 있어서 초기 단계의 분석은 향후 만성독성의 예측에 있어서 중요한 부분을 차지하고 있다. 바이오 디지털 콘텐츠를 이용하여 독성을 예측함에 있어 기존의 방법보다 더 빠르고 정확하게 예측하기 위해서는 많은 정보에 대한 분석기술의 진보가 필요하다. 또, 바이오 디지털 콘텐츠를 이용한 독성예측에 있어서 전체세포보다는 생물학적 현상을 일으키는 특이세포에서 이런 정보를 얻는 것이 중요하다고 생각된다. 또, 향후 바이오 디지털 콘텐츠 분석은 전략적 실험설계에 의한 데이터가 분석되고 축적되어야 하고, 분석알고리즘을 통한 네트워크 분석이 이루어져야 하며, 통합적 데이터 구축을 통해 이루어져야 할 것으로 생각된다.

HPLC-based metabolic profiling and quality control of leaves of different Panax species

  • Yang, Seung-Ok;Lee, Sang Won;Kim, Young Ock;Sohn, Sang-Hyun;Kim, Young Chang;Hyun, Dong Yoon;Hong, Yoon Pyo;Shin, Yu Su
    • Journal of Ginseng Research
    • /
    • 제37권2호
    • /
    • pp.248-253
    • /
    • 2013
  • Leaves from Panax ginseng Meyer (Korean origin and Chinese origin of Korean ginseng) and P. quinquefolius (American ginseng) were harvested in Haenam province, Korea, and were analyzed to investigate patterns in major metabolites using HPLC-based metabolic profiling. Partial least squares discriminant analysis (PLS-DA) was used to analyze the the HPLC chromatogram data. There was a clear separation between Panax species and/or origins from different countries in the PLS-DA score plots. The ginsenoside compounds of Rg1, Re, Rg2, Rb2, Rb3, and Rd in Korean leaves were higher than in Chinese and American ginseng leaves, and the Rb1 level in P. quinquefolius leaves was higher than in P. ginseng (Korean origin or Chinese origin). HPLC chromatogram data coupled with multivariate statistical analysis can be used to profile the metabolite content and undertake quality control of Panax products.

1D Proton NMR Spectroscopic Determination of Ethanol and Ethyl Glucuronide in Human Urine

  • Kim, Siwon;Lee, Minji;Yoon, Dahye;Lee, Dong-Kye;Choi, Hye-Jin;Kim, Suhkmann
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2413-2418
    • /
    • 2013
  • Forensic and legal medicine require reliable data to indicate excessive alcohol consumption. Ethanol is oxidatively metabolized to acetate by alcohol dehydrogenase and non-oxidatively metabolized to ethyl glucuronide (EtG), ethyl sulfate (EtS), phosphatidylethanol, or fatty acid ethyl esters (FAEE). Oxidative metabolism is too rapid to provide biomarkers for the detection of ethanol ingestion. However, the non-oxidative metabolite EtG is a useful biomarker because it is stable, non-volatile, water soluble, highly sensitive, and is detected in body fluid, hair, and tissues. EtG analysis methods such as mass spectroscopy, chromatography, or enzyme-linked immunosorbent assay techniques are currently in use. We suggest that nuclear magnetic resonance (NMR) spectroscopy could be used to monitor ethanol intake. As with current conventional methods, NMR spectroscopy doesn't require complicated pretreatments or sample separation. This method has the advantages of short acquisition time, simple sample preparation, reproducibility, and accuracy. In addition, all proton-containing compounds can be detected. In this study, we performed $^1H$ NMR analyses of urine to monitor the ethanol and EtG. Urinary samples were collected over time from 5 male volunteers. We confirmed that ethanol and EtG signals could be detected with NMR spectroscopy. Ethanol signals increased immediately upon alcohol intake, but decreased sharply over time. In contrast, EtG signal increased and reached a maximum about 9 h later, after which the EtG signal decreased gradually and remained detectable after 20-25 h. Based on these results, we suggest that $^1H$ NMR spectroscopy may be used to identify ethanol non-oxidative metabolites without the need for sample pretreatment.

Bacillus sp. MS202에 의한 Dinitroaniline계 제초제인 Pendimethalin의 부분환원 (Partial Reduction of Dinitroaniline Herbicide Pendimethalin by Bacillus sp. MS202)

  • 이영근;장화형;장유신;형석원;정혜영
    • 한국환경농학회지
    • /
    • 제23권4호
    • /
    • pp.197-202
    • /
    • 2004
  • 토양과 지하수에서 pendimethalin의 지속성은 환경에 해로운 영향을 미친다. 경남 마산에서 분리한 pendimealalin분해 균주는 API CHB50 kit 시험, FAME분석, 그리고 16S rDNA 염기서열분석 결과로 Bacillus sp. MS202로 잠정적으로 동정하였다. TLC, GC, 그리고 GC-MS 분석에 의해 Bacillus sp. MS202가 pendimethalin의 $-NO_2$$-NH_2$로 환원시킨다는 것을 알 수 있었다. 이는 일반적으로 알려진 호기성 미생물에 의한 pendimethalin 분해가 탈알킬화가 우선한다는 보고와 상반되는 새로운 결과이다.

점액세균의 이차대사산물 (Secondary metabolites of myxobacteria)

  • 현혜숙;조경연
    • 미생물학회지
    • /
    • 제54권3호
    • /
    • pp.175-187
    • /
    • 2018
  • 점액세균은 포식활동, 자기방어, 세포 간 신호전달 및 아직까지 알려지지 않은 다른 기능을 위해 다양한 이차대사산물을 생산한다. 점액세균에서 분리된 많은 이차대사산물들은 독특한 작용기작을 가지며 항암, 항세균, 항진균 등과 같은 약학적으로 유용한 생리활성을 보인다. 따라서 전 세계적으로 많은 점액세균 균주들이 분리되었고 이들로부터 다양한 생리활성물질들이 탐색되었다. 하지만 16S rRNA 데이터베이스 분석에 의하면 야생에는 지금까지 분리된 종류 이외에도 다양한 점액세균 종류들이 존재할 것으로 추정되며, 유전체 서열 분석에 의하면 각 점액세균들은 기존에 알려진 물질보다 더 많은 물질을 생산할 수 있는 능력이 있는 것으로 나타났다. 본 총설에서는 점액세균 유래 이차대사산물들과 이들의 유전자, 점액세균에서의 기능, 생합성 유전자의 발현을 조절하는 전사조절인자 등에 대한 최근까지의 연구 현황을 살펴보았다.

Evaluation of Matrix Effects in Quantifying Microbial Secondary Metabolites in Indoor Dust Using Ultraperformance Liquid Chromatographe-Tandem Mass Spectrometer

  • Jaderson, Mukhtar;Park, Ju-Hyeong
    • Safety and Health at Work
    • /
    • 제10권2호
    • /
    • pp.196-204
    • /
    • 2019
  • Background: Liquid chromatography-tandem mass spectrometry (LC-MSMS) for simultaneous analysis of multiple microbial secondary metabolites (MSMs) is potentially subject to interference by matrix components. Methods: We examined potential matrix effects (MEs) in analyses of 31 MSMs using ultraperformance LC-MSMS. Twenty-one dust aliquots from three buildings (seven aliquots/building) were spiked with seven concentrations of each of the MSMs ($6.2pg/{\mu}l-900pg/{\mu}l$) and then extracted. Another set of 21 aliquots were first extracted and then, the extract was spiked with the same concentrations. We added deepoxy-deoxynivalenol (DOM) to all aliquots as a universal internal standard. Ten microliters of the extract was injected into the ultraperformance LC-MSMS. ME was calculated by subtracting the percentage of the response of analyte in spiked extract to that in neat standard from 100. Spiked extract results were used to create a matrix-matched calibration (MMC) curve for estimating MSM concentration in dust spiked before extraction. Results: Analysis of variance was used to examine effects of compound (MSM), building and concentration on response. MEs (range: 63.4%-99.97%) significantly differed by MSM (p < 0.01) and building (p < 0.05). Mean percent recoveries adjusted with DOM and the MMC method were 246.3% (SD = 226.0) and 86.3% (SD = 70.7), respectively. Conclusion: We found that dust MEs resulted in substantial underestimation in quantifying MSMs and that DOM was not an optimal universal internal standard for the adjustment but that the MMC method resulted in more accurate and precise recovery compared with DOM. More research on adjustment methods for dust MEs in the simultaneous analyses of multiple MSMs using LC-MSMS is warranted.