References
- Ahn JW. 2009. Spirodienal, a new spiroketal from Sorangium cellulosum. Bull. Korean Chem. Soc. 30, 742-744. https://doi.org/10.5012/bkcs.2009.30.3.742
- Ahn JW, Jang KH, Chung SC, Oh KB, and Shin J. 2008. Sorangiadenosine, a new sesquiterpene adenoside from the myxobacterium Sorangium cellulosum. Org. Lett. 10, 1167-1169. https://doi.org/10.1021/ol800061h
- Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, et al. 2013. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108-160. https://doi.org/10.1039/C2NP20085F
- Baumann S, Herrmann J, Raju R, Steinmetz H, Mohr KI, Huttel S, Harmrolfs K, Stadler M, and Muller R. 2014. Cystobactamids: myxobacterial topoisomerase inhibitors exhibiting potent antibacterial activity. Angew. Chem. Int. Ed. 53, 14605-14609. https://doi.org/10.1002/anie.201409964
- Belogurov GA, Vassylyeva MN, Sevostyanova A, Appleman JR, Xiang AX, Lira R, Webber SE, Klyuyev S, Nudler E, Artsimovitch I, et al. 2009. Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457, 332335.
- Berdy J. 2005. Bioactive microbial metabolites. J. Antibiot. 58, 1-26. https://doi.org/10.1038/ja.2005.1
- Berdy J. 2012. Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot. 65, 385-395. https://doi.org/10.1038/ja.2012.27
- Berleman JE, Allen S, Danielewicz MA, Remis JP, Gorur A, Cunha J, Hadi MZ, Zusman DR, Northen TR, Witkowska HE, et al. 2014. The lethal cargo of Myxococcus xanthus outer membrane vesicles. Front. Microbiol. 5, 474.
- Bode HB, Irschik H, Wenzel SC, Reichenbach H, Muller R, and Hofle G. 2003. The leupyrrins: a structurally unique family of secondary metabolites from the myxobacterium Sorangium cellulosum. J. Nat. Prod. 66, 1203-1206. https://doi.org/10.1021/np030109v
- Brodmann T, Janssen D, Sasse F, Irschik H, Jansen R, Muller R, and Kalesse M. 2010. Isolation and synthesis of chivotriene, a chivosazole shunt product from Sorangium cellulosum. Eur. J. Org. Chem. 2010, 5155-5159. https://doi.org/10.1002/ejoc.201000781
- Browning DF, Whitworth DE, and Hodgson DA. 2003. Light-induced carotenogenesis in Myxococcus xanthus: functional characterization of the ECF sigma factor CarQ and antisigma factor CarR. Mol. Microbiol. 48, 237-251. https://doi.org/10.1046/j.1365-2958.2003.03431.x
- Burchard RP and Dworkin M. 1966. Light-induced lysis and carotenogenesis in Myxococcus xanthus. J. Bacteriol. 91, 535-545.
- Castro CN, Freitag J, Berod L, Lochner M, and Sparwasser T. 2015. Microbe-associated immunomodulatory metabolites: Influence on T cell fate and function. Mol. Immunol. 68, 575-584. https://doi.org/10.1016/j.molimm.2015.07.025
- Dickschat JS, Bode HB, Wenzel SC, Muller R, and Schulz S. 2005a. Biosynthesis and identification of volatiles released by the myxobacterium Stigmatella aurantiaca. Chembiochem 6, 2023-2033. https://doi.org/10.1002/cbic.200500174
- Dickschat JS, Reichenbach H, Wagner-Dobler I, and Schulz S. 2005b. Novel pyrazines from the myxobacterium Chondromyces crocatus and marine bacteria. Eur. J. Org. Chem. 2005, 4141-4153. https://doi.org/10.1002/ejoc.200500280
- Dickschat JS, Wenzel SC, Bode HB, Muller R, and Schulz S. 2004. Biosynthesis of volatiles by the myxobacterium Myxococcus xanthus. Chembiochem 5, 778-787. https://doi.org/10.1002/cbic.200300813
- Diestel R, Irschik H, Jansen R, Khalil MW, Reichenbach H, and Sasse F. 2009. Chivosazoles A and F, cytostatic macrolides from myxobacteria, interfere with actin. Chembiochem 10, 2900-2903. https://doi.org/10.1002/cbic.200900562
- Elnakady YA, Sasse F, Lunsdorf H, and Reichenbach H. 2004. Disorazol A1, a highly effective antimitotic agent acting on tubulin polymerization and inducing apoptosis in mammalian cells. Biochem. Pharmacol. 67, 927-935. https://doi.org/10.1016/j.bcp.2003.10.029
- Euzeby JP. 1997. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int. J. Syst. Bacteriol. 47, 590-592. https://doi.org/10.1099/00207713-47-2-590
- Fleta-Soriano E, Smutna K, Martinez JP, Lorca-Oro C, Sadiq SK, Mirambeau G, Lopez-Iglesias C, Bosch M, Pol A, Bronstrup M, et al. 2017. The Myxobacterial metabolite soraphen A inhibits HIV-1 by reducing virus production and altering virion composition. Antimicrob. Agents Chemother. 61, e00739-17.
- Fujimoto H, Kinoshita T, Suzuki H, and Umezawa H. 1970. Studies on the mode of action of althiomycin. J. Antibiot. 23, 271-275. https://doi.org/10.7164/antibiotics.23.271
- Gerth K, Bedorf N, Hofle G, Irschik H, and Reichenbach H. 1996. Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physicochemical and biological properties. J. Antibiot. 49, 560-563. https://doi.org/10.7164/antibiotics.49.560
- Gerth K, Pradella S, Perlova O, Beyer S, and Muller R. 2003. Myxobacteria: proficient producers of novel natural products with various biological activities-past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechnol. 106, 233-253. https://doi.org/10.1016/j.jbiotec.2003.07.015
- Gronewold TM, Sasse F, Lunsdorf H, and Reichenbach H. 1999. Effects of rhizopodin and latrunculin B on the morphology and on the actin cytoskeleton of mammalian cells. Cell Tissue Res. 295, 121-129. https://doi.org/10.1007/s004410051218
- Herrmann J, Fayad AA, and Muller R. 2017. Natural products from myxobacteria: novel metabolites and bioactivities. Nat. Prod. Rep. 34, 135-160. https://doi.org/10.1039/C6NP00106H
- Hirsch H. 1977. Bacteriocins form Myxococcus fulvus (Myxobacterales). Arch. Microbiol. 115, 45-49. https://doi.org/10.1007/BF00427843
- Hyun H, Lee S, Lee JS, and Cho K. 2018. Genetic and functional analysis of the DKxanthene biosynthetic gene cluster from Myxococcus stipitatus DSM 14675. J. Microbiol. Biotechnol. 28, 1068-1077.
- Irschik H and Reichenbach H. 1985. The mechanism of action of myxovalargin A, a peptide antibiotic from Myxococcus fulvus. J. Antibiot. 38, 1237-1245. https://doi.org/10.7164/antibiotics.38.1237
- Irschik H, Reichenbach H, Hofle G, and Jansen R. 2007. The thuggacins, novel antibacterial macrolides from Sorangium cellulosum acting against selected Gram-positive bacteria. J. Antibiot. 60, 733-738. https://doi.org/10.1038/ja.2007.95
- Kahnt J, Aguiluz K, Koch J, Treuner-Lange A, Konovalova A, Huntley S, Hoppert M, Sogaard-Andersen L, and Hedderich R. 2010. Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles. J. Proteome Res. 9, 5197-5208. https://doi.org/10.1021/pr1004983
- Keane R and Berleman J. 2016. The predatory life cycle of Myxococcus xanthus. Microbiology 162, 1-11. https://doi.org/10.1099/mic.0.000208
- Kim YJ, Kim HJ, Kim GW, Cho K, Takahashi S, Koshino H, and Kim WG. 2016. Isolation of coralmycins A and B, potent anti-Gram negative compounds from the myxobacteria Corallococcus coralloides M23. J. Nat. Prod. 79, 2223-2228. https://doi.org/10.1021/acs.jnatprod.6b00294
- Kim JS, Lee YC, Nam HT, Li G, Yun EJ, Song KS, Seo KS, Park JH, Ahn JW, Zee O, et al. 2007. Apicularen A induces cell death through Fas ligand up-regulation and microtubule disruption by tubulin down-regulation in HM7 human colon cancer cells. Clin. Cancer Res. 13, 6509-6517. https://doi.org/10.1158/1078-0432.CCR-07-1428
- Kjaerulff L, Raju R, Panter F, Scheid U, Garcia R, Herrmann J, and Muller R. 2017. Pyxipyrrolones: structure eucidation and biosynthesis of cytotoxic myxobacterial metabolites. Angew. Chem. Int. Ed. 56, 9614-9618. https://doi.org/10.1002/anie.201704790
- Kroos L. 2017. Highly signal-responsive gene regulatory network governing Myxococcus development. Trends Genet. 33, 3-15. https://doi.org/10.1016/j.tig.2016.10.006
- Krug D, Zurek G, Revermann O, Vos M, Velicer GJ, and Muller R. 2008. Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity. Appl. Environ. Microbiol. 74, 3058-3068. https://doi.org/10.1128/AEM.02863-07
- Kunze B, Reck M, Dotsch A, Lemme A, Schummer D, Irschik H, Steinmetz H, and Wagner-Dobler I. 2010. Damage of Streptococcus mutans biofilms by carolacton, a secondary metabolite from the myxobacterium Sorangium cellulosum. BMC Microbiol. 10, 199. https://doi.org/10.1186/1471-2180-10-199
- Kunze B, Trowitzsch-Kienast W, Hofle G, and Reichenbach H. 1992. Nannochelins A, B and C, new iron-chelating compounds from Nannocystis exedens (myxobacteria). Production, isolation, physico-chemical and biological properties. J. Antibiot. 45, 147-150. https://doi.org/10.7164/antibiotics.45.147
- Li X, Zee OP, Shin HJ, Seo Y, and Ahn AW. 2007. Soraphinol A, a new indole alkaloid from Sorangium cellulosum. Bull. Korean Chem. Soc. 28, 835-836. https://doi.org/10.5012/bkcs.2007.28.5.835
- Manor A, Eli I, Varon M, Judes H, and Rosenberg E. 1989. Effect of adhesive antibiotic TA on plaque and gingivitis in man. J. Clin. Periodontol. 16, 621-624. https://doi.org/10.1111/j.1600-051X.1989.tb01029.x
- Mauriello EM, Mignot T, Yang Z, and Zusman DR. 2010. Gliding motility revisited: how do the myxobacteria move without flagella? Microbiol. Mol. Biol. Rev. 74, 229-249. https://doi.org/10.1128/MMBR.00043-09
- McCurdy HD and MacRae TH. 1974. Xanthacin. A bacteriocin of Myxococcus xanthus fb. Can. J. Microbiol. 20, 131-135. https://doi.org/10.1139/m74-021
- Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, and Breitling R. 2011. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters. Nucleic Acids Res. 39, W339-W346. https://doi.org/10.1093/nar/gkr466
- Meiser P, Bode HB, and Muller R. 2006. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc. Natl. Acad. Sci. USA 103, 19128-19133. https://doi.org/10.1073/pnas.0606039103
- Mulwa LS, Jansen R, Praditya DF, Mohr KI, Wink J, Steinmann E, and Stadler M. 2018. Six heterocyclic metabolites from the myxobacterium Labilithrix luteola. Molecules 23, 542. https://doi.org/10.3390/molecules23030542
- Munoz J, Arias JM, and Montoya E. 1984. Production and properties of a bacteriocin from Myxococcus coralloides D. J. Appl. Bacteriol. 57, 69-74. https://doi.org/10.1111/j.1365-2672.1984.tb02357.x
- Murray BC, Peterson MT, and Fecik RA. 2015. Chemistry and biology of tubulysins: antimitotic tetrapeptides with activity against drug resistant cancers. Nat. Prod. Rep. 32, 654-662. https://doi.org/10.1039/C4NP00036F
- Nadmid S, Plaza A, Lauro G, Garcia R, Bifulco G, and Muller R. 2014. Hyalachelins A-C, unusual siderophores isolated from the terrestrial myxobacterium Hyalangium minutum. Org. Lett. 16, 4130-4133. https://doi.org/10.1021/ol501826a
- Nyfeler B, Hoepfner D, Palestrant D, Kirby CA, Whitehead L, Yu R, Deng G, Caughlan RE, Woods AL, Jones AK, et al. 2012. Identification of elongation factor G as the conserved cellular target of argyrin B. PLoS One 7, e42657. https://doi.org/10.1371/journal.pone.0042657
- Panter F, Krug D, Baumann S, and Muller R. 2018. Self-resistance guided genome mining uncovers new topoisomerase inhibitors from myxobacteria. Chem. Sci. 9, 4898-4908. https://doi.org/10.1039/C8SC01325J
- Perez J, Moraleda-Munoz A, Marcos-Torres FJ, and Munoz-Dorado J. 2016. Bacterial predation: 75 years and counting! Environ. Microbiol. 18, 766-779.
- Plaga W, Stamm I, and Schairer HU. 1998. Intercellular signaling in Stigmatella aurantiaca: purification and characterization of stigmolone, a myxobacterial pheromone. Proc. Natl. Acad. Sci. USA 95, 11263-11267. https://doi.org/10.1073/pnas.95.19.11263
- Rachid S, Gerth K, Kochems I, and Muller R. 2007. Deciphering regulatory mechanisms for secondary metabolite production in the myxobacterium Sorangium cellulosum So ce56. Mol. Microbiol. 63, 1783-1796. https://doi.org/10.1111/j.1365-2958.2007.05627.x
- Rachid S, Gerth K, and Muller R. 2009. NtcA-a negative regulator of secondary metabolite biosynthesis in Sorangium cellulosum. J. Biotechnol. 140, 135-142. https://doi.org/10.1016/j.jbiotec.2008.10.010
- Rachid S, Sasse F, Beyer S, and Muller R. 2006. Identification of StiR, the first regulator of secondary metabolite formation in the myxobacterium Cystobacter fuscus Cb f17.1. J. Biotechnol. 121, 429-441. https://doi.org/10.1016/j.jbiotec.2005.08.014
- Reichenbach H. 2005. Myxococcales, pp. 1059-1144. In Brenner DJ, Krieg NR, Staley JT, and Garrity GM. (eds.), Bergey's manual of systematic bacteriology, 2nd ed. Bergey's Manual Trust, East Lansing, MI., USA.
- Reichenbach H, Lang E, Schumann P, and Spror C. 2006. Byssovorax cruenta gen. nov., sp. nov., nom. rev., a cellulose-degrading myxobacterium: rediscovery of 'Myxococcus cruentus' Thaxter 1897. Int. J. Syst. Evol. Microbiol. 56, 2357-2363. https://doi.org/10.1099/ijs.0.63628-0
- Ringel SM, Greenough RC, Roemer S, Connor D, Gutt AL, Blair B, Kanter G, and von Strandtmann M. 1977. Ambruticin (W7783), a new antifungal antibiotic. J. Antibiot. 30, 371-375. https://doi.org/10.7164/antibiotics.30.371
- Sanford RA, Cole JR, and Tiedje JM. 2002. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl. Environ. Microbiol. 68, 893-900. https://doi.org/10.1128/AEM.68.2.893-900.2002
- Sasse F, Kunze B, Gronewold TM, and Reichenbach H. 1998. The chondramides: cytostatic agents from myxobacteria acting on the actin cytoskeleton. J. Natl. Cancer Inst. 90, 1559-1563. https://doi.org/10.1093/jnci/90.20.1559
- Schaberle TF, Lohr F, Schmitz A, and Konig GM. 2014. Antibiotics from myxobacteria. Nat. Prod. Rep. 31, 953-972. https://doi.org/10.1039/c4np00011k
- Schifrin A, Khatri Y, Kirsch P, Thiel V, Schulz S, and Bernhardt R. 2016. A single terpene synthase is responsible for a wide variety of sesquiterpenes in Sorangium cellulosum Soce56. Org. Biomol. Chem. 14, 3385-3393. https://doi.org/10.1039/C6OB00130K
- Schifrin A, Ly TT, Gunnewich N, Zapp J, Thiel V, Schulz S, Hannemann F, Khatri Y, and Bernhardt R. 2015. Characterization of the gene cluster CYP264B1-geoA from Sorangium cellulosum So ce56: biosynthesis of (+)-eremophilene and its hydroxylation. Chembiochem 16, 337-344. https://doi.org/10.1002/cbic.201402443
- Schulz S, Fuhlendorff J, and Reichenbach H. 2004. Identification and synthesis of volatiles released by the myxobacterium Chondromyces crocatus. Tetrahedron 60, 3863-3872. https://doi.org/10.1016/j.tet.2004.03.005
- Shimkets LJ. 1990. Social and developmental biology of the myxobacteria. Microbiol. Rev. 54, 473-501.
- Shimkets LJ, Dworkin M, and Reichenbach H. 2006. The myxobacteria, pp. 31-115. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, and Stackebrandt E. (eds.), The Prokaryotes, 3rd ed., vol. 7, Springer, New York, NY, USA.
- Shin H, Youn J, An D, and Cho K. 2013. Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Korean J. Microbiol. Biotechnol. 41, 44-51. https://doi.org/10.4014/kjmb.1210.10011
- Silakowski B, Kunze B, Nordsiek G, Blocker H, Hofle G, and Muller R. 2000. The myxochelin iron transport regulon of the myxobacterium Stigmatella aurantiaca Sg a15. Eur. J. Biochem. 267, 6476-6485. https://doi.org/10.1046/j.1432-1327.2000.01740.x
- Stein A. 2010. Ixabepilone. Clin. J. Oncol. Nurs. 14, 65-71. https://doi.org/10.1188/10.CJON.65-71
- Steinmetz H, Glaser N, Herdtweck E, Sasse F, Reichenbach H, and Hofle G. 2004. Isolation, crystal and solution structure determination, and biosynthesis of tubulysins - powerful inhibitors of tubulin polymerization from myxobacteria. Angew. Chem. Int. Ed. 43, 4888-4892. https://doi.org/10.1002/anie.200460147
- Steinmetz H, Li J, Fu C, Zaburannyi N, Kunze B, Harmrolfs K, Schmitt V, Herrmann J, Reichenbach H, Hofle G, et al. 2016. Isolation, structure elucidation, and (bio)synthesis of haprolid, a cell-type-specific myxobacterial cytotoxin. Angew. Chem. Int. Ed. 55, 10113-10117. https://doi.org/10.1002/anie.201603288
- Stoiber K, Naglo O, Pernpeintner C, Zhang S, Koeberle A, Ulrich M, Werz O, Muller R, Zahler S, Lohmuller T, et al. 2018. Targeting de novo lipogenesis as a novel approach in anti-cancer therapy. Br. J. Cancer 118, 43-51. https://doi.org/10.1038/bjc.2017.374
- Surup F, Viehrig K, Rachid S, Plaza A, Maurer CK, Hartmann RW, and Muller R. 2018. Crocadepsins-depsipeptides from the myxobacterium Chondromyces crocatus found by a genome mining approach. ACS Chem. Biol. 13, 267-272. https://doi.org/10.1021/acschembio.7b00900
- Tomura T, Nagashima S, Yamazaki S, Iizuka T, Fudou R, and Ojika M. 2017. An unusual diterpene-enhygromic acid and deoxyenhygrolides from a marine myxobacterium, Enhygromyxa sp. Mar. Drugs 15, E109. https://doi.org/10.3390/md15040109
- Trowitzsch W, Witte L, and Reichenbach H. 1981. Geosmin from earthy smelling culture of Nannocystis exedens (Myxobacterales). FEMS Microbiol. Lett. 12, 257-226. https://doi.org/10.1111/j.1574-6968.1981.tb07653.x
- Tsai H and Hirsch H. 1981. The primary structure of fulvocin C from Myxococcus fulvus. Biochim. Biophys Acta 667, 213-217. https://doi.org/10.1016/0005-2795(81)90082-9
- Tyc O, Song C, Dickschat JS, Vos M, and Garbeva P. 2017. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 25, 280-292. https://doi.org/10.1016/j.tim.2016.12.002
- Vahlensieck HF, Pridzun L, Reichenbach H, and Hinnen A. 1994. Identification of the yeast ACC1 gene product (acetyl-CoA carboxylase) as the target of the polyketide fungicide soraphen A. Curr. Genet. 25, 95-100. https://doi.org/10.1007/BF00309532
- Viehrig K, Surup F, Volz C, Herrmann J, Abou Fayad A, Adam S, Kohnke J, Trauner D, and Muller R. 2017. Structure and biosynthesis of crocagins: polycyclic posttranslationally modified ribosomal peptides from Chondromyces crocatus. Angew. Chem. Int. Ed. 56, 7407-7410. https://doi.org/10.1002/anie.201612640
- Volz C, Kegler C, and Muller R. 2012. Enhancer binding proteins act as hetero-oligomers and link secondary metabolite production to myxococcal development, motility, and predation. Chem. Biol. 19, 1447-1459. https://doi.org/10.1016/j.chembiol.2012.09.010
- Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Muller R, Wohlleben W, et al. 2015. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43, W237-W243. https://doi.org/10.1093/nar/gkv437
- Weissman KJ and Muller R. 2009. A brief tour of myxobacterial secondary metabolism. Bioorg. Med. Chem. 17, 2121-2136. https://doi.org/10.1016/j.bmc.2008.11.025
- Weissman KJ and Muller R. 2010. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat. Prod. Rep. 27, 1276-1295. https://doi.org/10.1039/c001260m
- Wenzel SC and Muller R. 2007. Myxobacterial natural product assembly lines: fascinating examples of curious biochemistry. Nat. Prod. Rep. 24, 1211-1224. https://doi.org/10.1039/b706416k
- Wenzel SC and Muller R. 2009. The impact of genomics on the exploitation of the myxobacterial secondary metabolome. Nat. Prod. Rep. 26, 1385-1407. https://doi.org/10.1039/b817073h
- Xiao Y, Wei X, Ebright R, and Wall D. 2011. Antibiotic production by myxobacteria plays a role in predation. J. Bacteriol. 193, 4626-4633. https://doi.org/10.1128/JB.05052-11
- Yamamoto E, Muramatsu H, and Nagai K. 2014. Vulgatibacter incomptus gen. nov., sp. nov. and Labilithrix luteola gen. nov., sp. nov., two myxobacteria isolated from soil in Yakushima Island, and the description of Vulgatibacteraceae fam. nov., Labilitrichaceae fam. nov. and Anaeromyxobacteraceae fam. nov. Int. J. Syst. Evol. Microbiol. 64, 3360-3368. https://doi.org/10.1099/ijs.0.063198-0
- Yang C, Kwon S, Kim SJ, Jeong M, Park JY, Park D, Hong SJ, Jung JW, and Kim C. 2017. Identification of indothiazinone as a natural antiplatelet agent. Chem. Biol. Drug 90, 873-882. https://doi.org/10.1111/cbdd.13008
- Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, and Chun J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613-1617. https://doi.org/10.1099/ijsem.0.001755
- Ziemert N, Alanjary M, and Weber T. 2016. The evolution of genome mining in microbes - a review. Nat. Prod. Rep. 33, 988-1005. https://doi.org/10.1039/C6NP00025H