Browse > Article
http://dx.doi.org/10.5806/AST.2020.33.1.23

Development and validation of a qualitative GC-MS method for methamphetamine and amphetamine in human urine using aqueous-phase ethyl chloroformate derivatization  

Kim, Jiwoo (Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office)
Sim, Yeong Eun (Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office)
Kim, Jin Young (Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office)
Publication Information
Analytical Science and Technology / v.33, no.1, 2020 , pp. 23-32 More about this Journal
Abstract
Methamphetamine (MA) is the most common and available drug of abuse in Korea and its primary metabolite is amphetamine (AP). Detection of AP derivatives, such as MA, AP, phentermine (PT), MDA, MDMA, and MDEA by the use of immunoassay screening is not reliable and accurate due to cross-reactivity and insufficient specificity/sensitivity. Therefore, the analytical process accepted by most urine drug-testing programs employs the two-step method with an initial screening test followed by a more specific confirmatory test if the specimen screens positive. In this study, a gas chromatography-mass spectrometric (GC-MS) method was developed and validated for confirmation of MA and AP in human urine. Urine sample (500 µL) was added with N-isopropylbenzylamine as internal standard and ethyl chloroformate as a derivatization reagent, and then extracted with 200 µL of ethyl acetate. Extracted samples were analysed with GC-MS in the SIM/ Scan mode, which were screened by Cobas c311 analyzer (Roche/Hitachi) to evaluate the efficiency as well as the compatibility of the GC-MS method. Qualitative method validation requirements for selectivity, limit of detection (LOD), precision, accuracy, and specificity/sensitivity were examined. These parameters were estimated on the basis of the most intense and characteristic ions in mass spectra of target compounds. Precision and accuracy were less than 5.2 % (RSD) and ±14.0 % (bias), respectively. The LODs were 3 ng/mL for MA and 1.5 ng/mL for AP. At the screening immunoassay had a sensitivity of 100% and a specificity of 95.1 % versus GC-MS for confirmatory testing. The applicability of the method was tested by the analysis of spiked urine and abusers' urine samples.
Keywords
validation; qualitative analysis; aqueous-phase derivatization; urine; methamphetamine; GC-MS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. K. Mackey and B. A. Liang, J. Med. Internet Res., 15, 665-689 (2013).
2 J. Lee, S. Yang, Y. Kang, E. Han, L. Y. Feng, J. H. Li and H. Chung, Forensic Sci. Int., 272, 1-9 (2017).   DOI
3 Supreme Prosecutors' Office, White Paper on Drug-Related Crimes 2018, Seoul, Korea, 2019.
4 N. J. Kwon and E. Han, Forensic Sci. Int., 286, 81-85 (2018).   DOI
5 J. Caldwell, L. G. Dring and R. T. Williams, Biochem. J., 129, 11-22 (1972).   DOI
6 Y. Xue, J. T. He, K. K. Zhang, L. J. Chen, Q. Wang and X. L. Xie, Biochem. Biophys. Res. Commun., 509, 395-401 (2019).   DOI
7 J. R. Richards, T. E. Albertson, R. W. Derlet, R. A. Lange, K. R. Olson and B. Z. Horowitz, Drug Alcohol Depend., 150, 1-13 (2015).   DOI
8 G. M. Reisfield, B. A. Goldberger and R. L. Bertholf, Bioanalysis, 1, 937-952 (2009).   DOI
9 A. Saitman, H. D. Park and R. L. Fitzgerald, J. Anal. Toxicol., 38, 387-396 (2014).   DOI
10 A. D. de Jager and N. L. Bailey, J. Chromatogr. B, 879, 2642-2652 (2011).   DOI
11 S. J. Mule and G. A. Casella, J. Anal. Toxicol., 12, 102-107 (1988).   DOI
12 E. R. Perez, J. A. Knapp, C. K. Horn, S. L. Stillman, J. E. Evans and D. P. Arfsten, J. Anal. Toxicol., 40, 201-207 (2016).   DOI
13 D. K. Lee, M. H. Yoon, Y. P. Kang, J. Yu, J. H. Park, J. Lee and S. W. Kwon, Food Chem., 141, 3931-3937 (2013).   DOI
14 J. M. Halket, D. Waterman, A. M. Przyborowska, R. K. Patel, P. D. Fraser and P. M. Bramley, J. Exp. Bot., 56, 219-243 (2005).   DOI
15 C. Jimenez, R. Ventura and J. Segura, J. Chromatogr. B, 767, 341-351 (2002).   DOI
16 E. Trullols, I. Ruisanchez and F. X. Rius, Trends Anal. Chem., 23, 137-145 (2004).   DOI
17 R. Fogerson, D. Schoendorfer, J. Fay and V. Spiehler, J. Anal. Toxicol., 21, 451-458 (1997).   DOI
18 P. Husek, J. Chromatogr. B, 717, 57-91 (1998).   DOI
19 P. S. Cheng, C. Y. Fu, C. H. Lee, C. Liu and C. S. Chien, J. Chromatogr. B, 852, 443-449 (2007).   DOI
20 M. Gaugain-Juhel, B. Delepine, S. Gautier, M. P. Fourmond, V. Gaudin, D. Hurtaud-Pessel, E. Verdon and P. Sanders, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 26, 1459-1471 (2009).   DOI
21 K. Mohamed, J. Anal. Toxicol., 41, 639-645 (2017).   DOI
22 J. -Y. Moon, K. J. Kim, M. H. Moon, B. C. Chung and M. H. Choi. J. Lipid Res., 52, 1595-1603 (2011).   DOI
23 Y. H. Mun and J. H. Kim, J. Korean Soc. Clin. Toxicol., 16, 176-180 (2018).   DOI
24 M. D. Anglin, C. Burke, B. Perrochet, E. Stamper and S. Dawud-Noursi, J. Psychoactive Drugs, 32, 137-141 (2000).   DOI
25 S. Y. Kim, J. S. Lee and D. W. Han, J. Korean Med. Assoc., 56, 762-770 (2013).   DOI
26 A. G. Verstraete and F. V. Heyden, J. Anal. Toxicol., 29, 359-364 (2005).   DOI
27 A. J. Barnes, I. Kim, R. Schepers, E. T. Moolchan, L. Wilson, G. Cooper, C. Reid, C. Hand and M. A. Huestis, J. Anal. Toxicol., 27, 402-407 (2003).   DOI
28 W. Y. Pyo, C. H. Jo and S. W. Myung, Chromatographia, 64, 731-737 (2006).   DOI
29 J. C. Cheong, J. Y. Kim, M. K. In and W. J. Cheong, Anal. Sci. Technol., 21, 41-47 (2008).
30 Y. Qiu, M. Su, Y. Liu, M. Chen, J. Gu, J. Zhang and W. Jia, Anal. Chim. Acta, 583, 277-283 (2007).   DOI
31 S. P. Elliott, D. W. S. Stephen and S. Paterson, Sci. Justice, 58, 335-345 (2018).   DOI