Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.8.2413

1D Proton NMR Spectroscopic Determination of Ethanol and Ethyl Glucuronide in Human Urine  

Kim, Siwon (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
Lee, Minji (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
Yoon, Dahye (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
Lee, Dong-Kye (Department of Forensic Chemistry, National Forensic Service Southern District Office)
Choi, Hye-Jin (Department of Forensic Chemistry, National Forensic Service Southern District Office)
Kim, Suhkmann (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
Publication Information
Abstract
Forensic and legal medicine require reliable data to indicate excessive alcohol consumption. Ethanol is oxidatively metabolized to acetate by alcohol dehydrogenase and non-oxidatively metabolized to ethyl glucuronide (EtG), ethyl sulfate (EtS), phosphatidylethanol, or fatty acid ethyl esters (FAEE). Oxidative metabolism is too rapid to provide biomarkers for the detection of ethanol ingestion. However, the non-oxidative metabolite EtG is a useful biomarker because it is stable, non-volatile, water soluble, highly sensitive, and is detected in body fluid, hair, and tissues. EtG analysis methods such as mass spectroscopy, chromatography, or enzyme-linked immunosorbent assay techniques are currently in use. We suggest that nuclear magnetic resonance (NMR) spectroscopy could be used to monitor ethanol intake. As with current conventional methods, NMR spectroscopy doesn't require complicated pretreatments or sample separation. This method has the advantages of short acquisition time, simple sample preparation, reproducibility, and accuracy. In addition, all proton-containing compounds can be detected. In this study, we performed $^1H$ NMR analyses of urine to monitor the ethanol and EtG. Urinary samples were collected over time from 5 male volunteers. We confirmed that ethanol and EtG signals could be detected with NMR spectroscopy. Ethanol signals increased immediately upon alcohol intake, but decreased sharply over time. In contrast, EtG signal increased and reached a maximum about 9 h later, after which the EtG signal decreased gradually and remained detectable after 20-25 h. Based on these results, we suggest that $^1H$ NMR spectroscopy may be used to identify ethanol non-oxidative metabolites without the need for sample pretreatment.
Keywords
Nuclear magnetic resonance (NMR); Metabolomics; Ethanol; Ethyl glucuronide (EtG); Multivariate analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alt, A.; Janda, I.; Seidl, S.; Wurst, F. Alcohol and Alcoholism 2000, 35, 313-314.   DOI   ScienceOn
2 Nicholas, P.; Kim, D.; Crews, F.; Macdonald, J. Chemical Research Toxicology 2008, 21, 408-420.   DOI   ScienceOn
3 Wurst, F.; Kempter, C.; Seidl, S.; Alt, A. Alcohol and Alcoholism 1999, 34, 71-77.   DOI   ScienceOn
4 Nishikawa, M.; Tsuchihashi, H.; Miki, A.; Katagi, M.; Schmitt, G.; Zimmer, H.; Keller, T.; Aderjan, R. Journal of Chromatography B: Biomedical Sciences and Applications 1999, 726, 105-110.   DOI   ScienceOn
5 Teague, C.; Holmes, E.; Maibaum, E.; Nicholson, J.; Tang, H.; Chan, Q.; Elliott, P.; Stamler, J.; Ueshima, H.; Zhou, B.; Wilson, I. Analyst 2004, 129, 259-264.   DOI   ScienceOn
6 Nicholas, P.; Kim, D.; Crews, F.; Macdonald, J. Analytical Biochemistry 2006, 358, 185-191.   DOI   ScienceOn
7 Baranowski, S.; Serr, A.; Thierauf, A.; Weinmann, W.; Grosse Perdekamp, M.; Wurst, F.; Halter, C. International Journal of Legal Medicine 2008, 122, 389-393.   DOI
8 Holmes, E.; Foxall, P.; Spraul, M.; Farrant, R.; Nicholson, J.; Lindon, J. Journal Pharmaceutical and Biomedical Analysis 1997, 15, 1647-1659.   DOI   ScienceOn
9 Zuppi, C.; Messana, I.; Forni, F.; Rossi, C.; Pennacchietti, L.; Ferrari, F.; Giardina, B. Clinica Chimica Acta 1997, 265, 85-97.   DOI   ScienceOn
10 Lenz, E. M.; Bright, J.; Wilson, I. D.; Morgan, S. R.; Nash, A. F. P. Journal of Pharmaceutical and Biomedical Analysis 2003, 33, 1103-1115.   DOI   ScienceOn
11 Weinmann, W.; Schaefer, P.; Thierauf, A.; Schreiber, A.; Wurst, F. Journal of the American Society for Mass Spectrometry 2004, 15, 188-193.   DOI   ScienceOn
12 Halter, C.; Dresen, S.; Auwaerter, V.; Wurst, F.; Weinmann, W. International Journal of Legal Medicine 2008, 122, 123-128.   DOI
13 Böttcher, M.; Beck, O.; Helander, A. Alcohol and Alcoholism 2008, 43, 46-48.
14 Peterson, K. Alcohol Research & Health 2004, 28, 30-37.
15 Borucki, K.; Schreiner, R.; Dierkes, J.; Jachau, K.; Krause, K.; Westphal, S.; Wurst, F.; Luley, C.; Schmidt-Gayk, H. Alcoholism: Clinical and Experimetal Research 2005, 29, 781-787.   DOI   ScienceOn
16 Best, C.; Laposata, M. Frontiers in Bioscience 2003, 8, e202-217.   DOI
17 Pawan, G. Proceedings of Nutrition Society 1972, 31, 83-89.   DOI   ScienceOn
18 Schloegl, H.; Dresen, S.; Spaczynski, K.; Stoertzel, M.; Wurst, F.; Weinmann, W. International Journal of Legal Medicine 2006, 120, 83-88.   DOI
19 Kharbouche, H.; Sporkert, F.; Staub, C.; Mangin, P.; Augsburger, M. Praxis 2009, 98, 1299-1306.   DOI   ScienceOn
20 Morini, L.; Politi, L.; Polettini, A. Addiction 2009, 104, 915-920.   DOI   ScienceOn
21 Morini, L.; Politi, L.; Groppi, A.; Stramesi, C.; Polettini, A. Journal Mass Spectrometry 2006, 41, 34-42.   DOI   ScienceOn
22 Wurst, F.; Schuttler, R.; Kempter, C.; Seidl, S.; Gilg, T.; Jachau, K.; Alt, A. Alcohol and Alcoholism 1999, 34, 262-263.   DOI   ScienceOn